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Natural Computation
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Energy consumption: 10−15 J/op, at least
106 more efficient than digital silicon
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honeybee occupies a
volume of around 1mm3

and weighs about 1mg.
The total number of
neurons in the brain is
estimated to be 950,000
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Neocortex → Neural computation → Silicon



VLSI technology
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Technological progress has
rapidly increased the number of
transistors that can be included
on a single chip.

Most current computing
architectures are based on
clocked, digital processing units
with a low degree of parallelism

IT community is struggling to find
alternative design and computing
paradigms to overcome these
limits (e.g. INTEL multi-core
CPUs, or IBM CELL processor).

Neuro-IT Roadmap v2.0



Neuromorphic VLSI systems
An attractive alternative computing paradigm

Exploit the physics of silicon to
reproduce the bio-physics of neural
systems.
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Neuromorphic VLSI systems
An attractive alternative computing paradigm

Exploit the physics of silicon to
reproduce the bio-physics of neural
systems.
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Neuromorphic VLSI systems
An attractive alternative computing paradigm

Exploit the physics of silicon to
reproduce the bio-physics of neural
systems.
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Neuromorphic VLSI systems
An attractive alternative computing paradigm

Exploit the physics of silicon to
reproduce the bio-physics of neural
systems.

Standard CMOS Technology

Process independent

Massively parallel

Mismatch “insensitive”

Fault tolerant

Compact

Low-power

Asynchronous



Address Event Representation
Best of both (digital & analog) worlds
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AER neural chips

Activity in “core” is sparse

Currents are integrated in
parallel
Synapses are the site of
memory and computation:

Implement “elaborate”
temporal dynamics
Implement “elaborate”
plasticity mechanisms

Neurons generate and
transmit “spikes” on an
asynchronous digital bus.



Hierarchical or multi-layer networks

The basic problem with these models is, of course, generalization:
a look-up table cannot deal with new events, such as viewing a face
from the side rather than the front, and it cannot learn in the predic-
tive sense described earlier. One of the simplest and most powerful
types of algorithm developed within learning theory corresponds to
networks that combine the activities of ‘units’, each broadly tuned to
one of the examples (Box 1). Theory (see references in Box 1) shows
that a combination of broadly tuned neurons — those that respond
to a variety of stimuli, although at sub-maximal firing rates — might
generalize well by interpolating among the examples.

In visual cortex, neurons with a bell-shaped tuning are common.
Circuits in infratemporal cortex and prefrontal cortex, which com-
bine activities of neurons in infratemporal cortex tuned to different
objects (and object parts) with weights learned from experience, may
underlie several recognition tasks, including identification and
categorization. Computer models have shown the plausibility of this
scheme for visual recognition and its quantitative consistency with
many data from physiology and psychophysics2–5 .

Figure 2 sketches one such quantitative model, and summarizes a
set of basic facts about cortical mechanisms of recognition established
over the last decade by several physiological studies of cortex6–8. Object
recognition in cortex is thought to be mediated by the ventral visual
pathway running from primary visual cortex, V1, over extrastriate
visual areas V2 and V4 to the inferotemporal cortex. Starting from
simple cells in V1, with small receptive fields that respond preferably to
oriented bars, neurons along the ventral stream show an increase in
receptive field size as well as in the complexity of their preferred stimuli.
At the top of the ventral stream, in the anterior inferotemporal cortex,
neurons respond optimally to complex stimuli such as faces and other
objects. The tuning of the neurons in anterior inferotemporal cortex
probably depends on visual experience9–19. In addition, some neurons
show specificity for a certain object view or lighting condition13,18,20–22.
For example, Logothetis et al.13 trained monkeys to perform an object
recognition task with isolated views of novel three-dimensional objects
(‘paperclips’; Fig. 1). When recording from the animals' inferotemporal
cortex, they found that the great majority of neurons selectively tuned
to the training objects were view-tuned (see Fig. 1) to one of the training
objects. About one tenth of the tuned neurons were view-invariant,
consistent with an earlier computational hypothesis23.

In summary, the accumulated evidence points to a visual recog-
nition system in which: (1) the tuning of infratemporal cortex cells is
obtained through a hierarchy of cortical stages that successively
combines responses from neurons tuned to simpler features; and (2)
the basic ability to generalize depends on the combination of cells
tuned by visual experience. Notice that in the model of Fig. 2, the
tuning of the units depends on learning, probably unsupervised (for
which several models have been suggested24; see also review in this
issue by Abbott and Regehr, page 796), since it depends only on
passive experience of the visual inputs. However, the weights of the
combination (see Fig. 3) depend on learning the task and require at
least some feedback (see Box 2). 

Thus, generalization in the brain can emerge from the linear com-
bination of neurons tuned to an optimal stimulus — effectively
defined by multiple dimensions25,23,26. This is a powerful extension of
the older computation-through-memory models of vision and
motor control. The question now is whether the available evidence
supports the existence of a similar architecture underlying general-
ization in domains other than vision. 

insight review articles

Figure 1 Tuned units in inferotemporal cortex. A monkey was trained to recognize
a three-dimensional ‘paperclip’ from all viewpoints (pictured at top). The graph
shows tuning to the multiple parameters characterizing each view summarized in
terms of spike rate versus rotation angle of three neurons in anterior inferotemporal
cortex that are view-tuned for the specific paperclip. (The unit corresponding to the
green tuning curve has two peaks — to a view of the object and its mirror view.) A
combination of such view-tuned neurons (Fig. 2) can provide view-invariant, object
specific tuning as found in a small fraction of the recorded neurons. Adapted from
Logothetis et al.13.
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Figure 2 A model of visual learning. The model summarizes in quantitative terms
other models and many data about visual recognition in the ventral stream pathway
in cortex. The correspondence between the layers in the model and visual areas is
an oversimplification. Circles represent neurons and arrows represent connections
between them; the dots signify other neurons of the same type. Stages of neurons
with bell-shaped tuning (with black arrow inputs), that provide example-based
learning and generalization, are interleaved with stages that perform a max-like
operation3 (denoted by red dashed arrows), which provides invariance to position
and scale. An experimental example of the tuning postulated for the cells in the
layer labelled inferotemporal in the model is shown in Fig. 1. The model accounts
well for the quantitative data measured in view-tuned inferotemporal cortex cells10

(J. Pauls, personal communication) and for other experiments55. Superposition of
gaussian-like units provides generalization to three-dimensional rotations and
together with the soft-max stages some invariance to scale and position. IT,
infratemporal cortex, AIT, anterior IT; PIT, posterior IT; PFC, prefrontal cortex.
Adapted from M. Riesenhuber, personal communication. 
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Potential Impact

Neuroscience
Theoretical models
Interfacing technology

Robotics and Embedded
Systems

AER, data-driven sensory
input devices
Modular, reconfigurable
AER signal processing

Parallel Computation
Spike-based computation
Programming of massively
parallel systems
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The ball is rolling

Past EU-Funded projects on AER systems
ALAVLSI

CAVIAR

These were the first important AER-oriented coordinated endeavors in
the European context. ALAVLSI and CAVIAR developed
complementary strategies for developing challenging hardware
implementations of AER-based neural processing systems.

Integrated Projects (FP6 Bio-I3 Proactive Initiative)
CILIA: Customized Intelligent Life-Inspired Arrays

DAISY: Neocortical Daisy Architectures and Graphical Models for
context-dependent Processing

FACETS: Fast Analog Computing with Emergent Transient States
in Neural Architecture



Room to grow...
Bio-inspired hardware

In the short term, it is unlikely that such architectures will
outperform conventional solutions, except perhaps on the
sensory periphery. But they could be the first step towards
new high performance computing strategies and provide
new insights into the working of the brain.
[. . .]
Brain-like computing on silicon will be useful in a broad
range of applications, from real time control devices for
robots to implantable devices such as artificial cochleas and
artificial retinas, to large scale simulation (e.g. of the brain).

Neuro-IT Roadmap v2.0


