

Stefan Wermter, Frederic Alexandre, Günther Palm, Friedemann Pulvermüller, Giacomo Rizzolatti/Vittorio Gallese

University of Sunderland INRIA at Nancy University of Ulm Medical Research Council at Cambridge University of Parma

Objectives of MirrorBot

 Mirror neurons fire for specific actions, visually observed actions and acoustically described actions

How can mirror neuron-based associative networks be used for multimodal actions in robots?

Individual goals

- collect imaging and neural recording data: EEG, MEG, fMRI, TMS
- identify neural architectures for perceptual visual and language data
- develop associative networks for mirror neuron concept
- train and evaluate the MirrorBot robot to perform actions

MirrorBot scenario

MirrorBot scenario

agent::= SAM action BOT action		
action::=	body_action head_action hand_action stop	
body_action::=	go move_body turn_body	object x_direction y_direction
head_action :::	= turn_head show	y_direction z_direction object
hand_action ::	= pick put lift drop touch	object object object object object

MirrorBot grammar

x_direction::= forward | backward y_direction::= left | right z_direction::= up | down object::= [colour] natural_object [colour] artefact_object colour ::= brown | blue | black | white natural_object::= nut | plum | dog | cat artefact_object::= desk | wall | ball | cup

MirrorBot platform

Examples of ongoing Work

F5 Neuron Responses

The response of an audiovisual F5 mirror neuron

Audio-visual response

Somatotopy of actions words and actions (fMRI)

Word-related neuronal ensembles distributed over perisylvian cortex

- Performed actions, visually observed actions and actions described in language are associated with related cortical circuits
- The cortical circuits are topologically organised as areas for mouth, hand and leg areas
- How do we model these findings for language, vision, motor control?

Language areas of MirrorBot: Bot show red apple

Wernicke

A5-01-a A5-02 Broca

acoustic input=_end

Visual encoding

- Non-uniform distribution on the retina
- Visual neural filters
- Overlapping receptive fields

Motor encoding

- Maximal activities when movement in preferred direction of neuron
- In M1, topographic organization: neighboring neurons have similar preferred directions
- Neural maps realise population encoding for motor commands

Associative model for sensor motor representation

 control of saccadic eye movements towards a target

Network activations

Image "what" "where"

Docking

MirrorBot website

Conclusions

Experiments on action-oriented cortical organisation

- Computational models for language, vision, action on robot
- Aim towards mirror neuron-based association of multiple modalities in neural models

A multidisciplinary approach for the study of frontal cortex

- 20 October 2003, Convention Centre, Nancy, France
- www.his.sunderland.ac.uk/mirrorbot/

