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Project Objectives

Produce a model of the cerebellum based on known physiology and latest 
analytical and computational results that can be implemented efficiently 
in software/hardware for running real-time robotic experiments. 

Sony SDR-4X



Real-time Spiking Network 
for Robot Control

Spiking Cerebellar Model

ComputerComputer
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Computer Computer
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Computer
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Impacts:

• Advances in robot learning
fine response modulation/anticipation with context

• Improve cerebellar neurophysiological knowledge

• Spiking representation 

• Improve knowledge of action-perception loop 
cerebellum participation 

• Real-time spiking hardware technology

• Potential use in human rehabilitation 



The Cerebellum
The human central nervous system, Nieuwenhuys et al., 1988



Route to a spiking cerebellar model

Theory
Analytical model

Detailed Spiking
Model

Physiology

Simplified Spiking
Model

Spiking Model
Implementation



The Cerebellum
Principles of Neural Science, Kandel et al., 4th Ed., 2000



Granular layer

Outline:

•Physiology

•Computer models
•Theoretical models
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Physiology
detailed models 
of neurons and 
synapses

detailed network 
models

simplified models 
of neurons and 
synapses

simplified 
network models

Hardware 
implementation

Modeling: from physiological complexity to simplified harware 
implementation retaining the salient biophysical properties of 

neurons and synapses

Acute slice recordings

Patch-clamp  /  imaging
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Golgi cell
1) Autorhythmic firing 

2) Subthreshold oscillations

3) Postinhibitory rebound

4) Post-burst pause 

5) Inward rectification

model 

IH 50%



Recruitment of 1-4- synapses Spike trains in granule cells 
during 100 Hz stimulation of 
mossy fibers 

Modeling 
neurotransmission 

dynamics by 
conductance-based 

models
Mossy fiber - granule cell neurotransmission 
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Mossy fibre – granule cell LTP

CN-C



The presynaptic expression mechanism implies that 
neurotransmission dynamics are modified during LTP 

Control of spike initiation in 
the model by changing 
release probability

p = 0.1

p = 0.5

The infuence of dynamics changes caused by LTP are currently under 
testing in a detailed model network comprising 2000 Granule Cells.



Granular layer

Outline:

•Physiology

•Computer models
•Theoretical models



Granule cells perform a recoding of the 
mossy fibers inputs into a sparse 
representation using a biologically 
plausible ICA (Coenen et al., 2001; 

Eagleman et al., 2001)

Which permits optimal noise reduction 
by the Golgi cell   &
Facilitates learning in the Purkinje and 
molecular layer of the cerebellum
(simplifies credit assignment problem)
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Denoising: A new role for 
the Golgi cells 

Mossy fibers

Granule 
cells

Parallel fibers

Golgi cell
inhibition



Mossy fibers

Glomeruli

Granule cells

Parallel fibers

ix

jiw

js

Experimental evidence:
mossy fiber-granule cell 

synaptic weight changes:

Long-term potentiation (LTP)
synaptic weight increase

EPSPs, presynaptic currents

Long-term depression (LTD)
synaptic weight decrease

(D’Angelo, 1999; Maffei et al., 2002; etc.)

Changes in cell excitability 
intrinsic cell properties

(Armano et al., 2000)

Plasticity at granule cellPlasticity at granule cell
synapses:synapses:



Images as mossy fiber inputs toImages as mossy fiber inputs to
illustrate putative ‘statistical structure’illustrate putative ‘statistical structure’

granule cell granule cell 
receptive fieldreceptive field

one pixel = one mossy fiber inputone pixel = one mossy fiber input

granule cell weights adapt to become granule cell weights adapt to become 
independent as much as possible independent as much as possible 
using the mossy fibers statistical using the mossy fibers statistical 
structurestructure



Cerebellar inputs will contain noise:Cerebellar inputs will contain noise:

original image

noisy mossy
fibers inputs



Golgi cell
inhibition

Encoding by granule cells 
with Golgi cell inhibition 



Encoding by granule cells: Encoding by granule cells: 
robust coding?robust coding?

Random 
weights

Decorrelating
weights

Kettner et al., JNeurophys., 1997

Schweighofer et al., Neurosci., 2001

Other models:Other models:

Robust sparse coding:Robust sparse coding: Chauvet,  1986; Jonker et al., 1998 



Spatiotemporal coding
Granule cells display 

facilitating and depressing 
synapses

(D’Angelo, personal communication)

Preferred mossy fibers stimulus
for a set of granule cells 

)()()( ntxnwts in i jij −=∑ ∑

(Bell & Sejnowski, 1995; Lewicki, 2002; 
Olshausen, 2002; 
van Hateren & Ruderman, 1998)

Constructing temporal basis 
function from experience

StaticStatic



Purkinje/molecular layer

Outline:

•Physiology
•Theoretical models



Purkinje cell 
High resolution fluorescence confocal image stacks (3D)



Inhibitory interneuron
High resolution fluorescence confocal image stacks (3D)

Reconstruction



Purkinje cell as a perceptron

Brunel et al., submitted



Purkinje weight distributions 
& silent synapses

Perceptron weight distrib.

Capacity analysis: ~50000 patterns/Purkinje cell

Experimental vs Theoretical



Cerebellar
Task Development

•Task description •Cerebellar simulation results

Outline:



Task description: cerebellar 
plong player

Pong - 1972 Spiking cerebellar
model

Computer

Computer, FPGA

Simulated sensory 
systems:
visual, auditory, touch

Movement,motor actions



Task description: cerebellar 
pong player

Two players
-racquet moves
wrt player

Different configurations 
possible: 
- ball dynamics (speed, 
spin, rebound effects)

- racquet dynamics
- racquet in 1D, 2D or 3D
- control strategies:

tracking/pursuit
colliding trajectory 
controller imitation 

- etc.

One player
-racquet move 
with player 



Cerebellar pong player
Look for:

• Learning multiple tasks -> learning multiple games
or one game with different dynamics

• Min interference   -> fast switching/modulation btw games
with no need to relearn

• Flexible, possibly large sensorimotor context 
• Cerebellar encoding: useful for high numbers of games/dynamics 

to learn



@ Copyright Coenen, 2002
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Cerebellar pong player: 
smooth pursuer

Tenns spiking neural network simulator (Altjira Software)



Cerebellar pong player: cell responses 
during tracking before learning

Tenns spiking neural network simulator (Altjira Software)

Racquet position

Inferior olive neurons

Purkinje cells

Cerebellar nucleus 
neurons



Cerebellar pong player: cell responses 
during tracking after learning

Tenns spiking neural network simulator (Altjira Software)

Racquet position

Inferior olive neurons

Purkinje cells

Cerebellar nucleus 
neurons



Cerebellar pong player
Before learning

After



A robot playing videogames

Task extension: mixing Task extension: mixing 
simulated with real simulated with real 

Pong, 1972 Spiking cerebellar
model

Computer, FPGA

simulated/ real systems:
visual, auditory, touch

Robot movement, action

Computer



Further extension: Further extension: 
airair--table hockey table hockey 

Air-table hockey Spiking cerebellar
model

Computer, FPGA

real systems:
visual, auditory, touch

Robot movement, action



Efficient Implementation

Hardware 



Natural Neuron 
characteristics incorporated 

in developed hardware

Synapses as conductances (shunting or multiplicative synapses)

Time-dependent synaptic characteristic: gradual injection of charge.
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Experimental Results
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Preliminary Implementation
(NRH approach)

Table 1. Implementation cost and computing time of different neural configurations. 

Inputs 
per 
Neuron 

Functional 
Units 

Total 
Num. of 
Neu. 

Number of 
Slices 

Max. Clock 
freq. 

(Mhz) 

Computing 
time (ms) 

Embedded Memory 
Blocks 
(EMB) 

2 2 4 1832 
(9%) 

23.3 0.0055 24 (15%) 

2  2 1024 1966 
(10%) 

20.2 1.4 65 (60%) 

8 4 8 5476 
(28%) 

20.9 0.0011 36 (22%) 

8 4 1760 5595 
(29%) 

20.5 2.9 160 
(100%) 

8 8 16 12011 
(62%) 

18.7 0.0018 36 (22%) 

8 8 1760 12010 
(62%) 

18.7 4.5 160 
(100%) 



Supporting Focus Group
Software Framework

•Network Model Interface (NMI) 
Outline:





Dr. Boris Barbour (ENS, Paris) 
Dr. Olivier J.-M. D. Coenen (SONY, Paris) 
Associate Prof. Eduardo Ros  (Univ of Granada)
Prof. Egidio D’Angelo (INFM, Pavia)
Dr. Michael P. Arnold (SONY subcontractor - Altjira Software)

Principal Investigators

Staff
Dr. Eva M. Ortigosa (UGR)
Dr. Paola Rossi (INFM)
Dr. Lia Forti (INFM) 
Dr. David Gall (INFM)
Dr. Michele Bezzi (SONY)
Dr. Eric Ronco (SONY)

Students
Francesca Porestori (INFM)
Leda Roggieri (INFM)
Jonathan Mapelli (INFM) 
Thierry Nieus  (INFM)
Richard Carrillo (UGR)
Rodrigo Agis (UGR) 
David Philipona (SONY) 
David Marchal (SONY)
Jérôme Lecoq (SONY)
Edouard Dognin (SONY)



ISTIST--20012001--35271  Project SpikeFORCE:35271  Project SpikeFORCE:
RealReal--time Spiking Networks for Robot Controltime Spiking Networks for Robot Control

Project funded in part by the Future and Emerging Project funded in part by the Future and Emerging 
Technologies arm of the IST ProgrammeTechnologies arm of the IST Programme
FETFET--LifeLife--like Perception Systems (LPS) Proactive like Perception Systems (LPS) Proactive 
Initiative 2001 in BionicsInitiative 2001 in Bionics


	Project Objectives
	Real-time Spiking Network for Robot Control
	The Cerebellum  The human central nervous system, Nieuwenhuys et al., 1988
	Route to a spiking cerebellar model
	The Cerebellum   Principles of Neural Science, Kandel et al., 4th Ed., 2000
	Granular layer
	Granular layer
	Denoising: A new role for the Golgi cells
	Encoding by granule cells with Golgi cell inhibition
	Spatiotemporal coding
	Purkinje/molecular layer
	Purkinje cell
	Inhibitory interneuron
	Purkinje cell as a perceptron
	Purkinje weight distributions & silent synapses
	Cerebellar  Task Development
	Task description: cerebellar plong player
	Task description: cerebellar pong player
	Cerebellar pong player
	Cerebellar pong player: smooth pursuer
	Cerebellar pong player
	A robot playing videogames
	Efficient Implementation
	Natural Neuron characteristics incorporated in developed hardware
	Experimental Results
	Preliminary Implementation(NRH approach)
	Supporting Focus Group  Software Framework

