Organic Computing: Life without Software NEURO-iT Workshop Bonn June 22, 2004

Christoph von der Malsburg

Institut für Neuroinformatik Ruhr-Universität Bochum

and Computer Science Department and Program for Neurosciences University of Southern California

transistors

Chip complexity doubles every 18 months

Expectations

More Complex Functions Flexibility, Robustness Adaptivity, Evolvability Autonomy User Friendliness Situation Awareness We expect our systems to become intelligent!

NIST study 02: yearly US losses due to SW failure: \$ 60 Billion

...and what if IT systems grow by another factor of ten thousand?

Life: Computing without Software

- Living Cell: as complex as PC, but flexible, robust, autonomous, adaptive, evolvable, situation aware
- Organism: more complex than all existing software
- Human Brain: intelligent, conscious, creative It is the source of all algorithms!! Estimated computing power: 10¹⁵ OPS PC today 10⁹ OPS, By Moore's Law, the PC will equal the brain in 30 years
- But: Life is not digital, not deterministic, not algorithmic

Evolving Computing Needs:

• From Algorithms ...

Arithmetic, Accounting, Differential Equations

... to Systems

 Coordination of Sub-Processes
 Communication
 Perception
 Autonomous Action

A New Computing Paradigm:

Organisms are Computers Computers should be Organisms Organic Computing

Algorithmic Division of Labor

Human:

Creative Infrastructure: Goals, Methods, Interpretation, World Knowledge, Diagnostics

Detailed Communication

Machine:

Algorithms: deterministic, fast, clue-less

Organic Computers

Electronic Organisms

Algorithmic Machines...

are programmed contain no infrastructure may be simple have to be simple

Electronic Organisms...

grow, learn contain infrastructure have to be complex may be complex

Constraints set by Neuroscience

Constraints set by Molecular Biology

- G Positive booster
- F E } Repression in adjacent ectoderm
- DC Repression in skeletogenic mesenchyme
- B Expression in midgut of late embryo
 Controls late rise in expression
 Activates switch resulting in exclusive use of its own input
 - A Expression in vegetal plate in early embryo
 Sole communication to BTA for whole system
 Synergistic amplification of B input
 Transduction of FE, DC repression

Davidson 1

Davidson 2

Interdisciplinary Cooperation

Existing Efforts

Neural Networks **Fuzzy Logic Genetic Algorithms** Artificial Life Autonomous Agents **Amorphous Computing Belief Propagation Production Systems**

Some Current Initiatives

•IBM's Autonomic Computing Campaign www.ibm.com/research/autonomic

Organic Computing Web Site

www.organic-computing.org

•Britain's Foresight program: Cognitive Systems Project www.foresight.gov.uk

•GI (Gesellschaft für Informatik): Organic Computing Initiativex www.organic-computing.de

•DFG: Cognitive Systems Center Call for proposals

Issues

- A Generic Data Architecture
- A Generic Process Architecture: Self-Organization
- Autonomous Sub-System Integration
- Goal Definition by Humans by Self-Organization
- Instruction (Man-Machine Interfaces!)
- Autonomous Learning from the Natural Environment

The Neural Gap

Algorithmic Computing universal but dependent on man Neural Computing adaptive but not universal The Dynamic Link Architecture ... as theory of the brain's function

Generic data structure: Graphs Nodes: (groups of) Neurons as elementary Symbols Links: basis for compositionality

Generic process structure: Network Self-Organization Creating a structured universe Important process: recognition of isomorphy

Rapid Network Self-Organization

Characterization of Attractor Networks:

- Redundant Pathways
- Sparcity

The Learning Problem

- Central problem: recognize *significant* connections and patterns
- Associative Memory: *all* connections are strengthened Result: monolithic attractor states
- NN learning: significance defined as statistical recurrence Result: learning time explodes beyond 100 bit input patterns
- Required: a definition of significance that ...
 - can be diagnosed in individual scene
 - incorporates purpose
- Statistics is context-dependent Result: learning deadlock without (context-) recognition no learning, without learning no recognition

Schema-Based Learning

Functional significance defined by pre-existing schemas (originating from evolution, culture, learning or design)

A schema is a flexible description of a situation

Learning proceeds by ...

- 1. Recognizing a schema
- 2. Extracting the recognized elements
- 3. Compacting such examples by statistical means

Vision as Major Application Domain

One-Click Learning

Hartmut Loos

Hartmut Loos

Hartmut Loos

Kodak Data Base: failures

Interpreting Faces by Bunch Graphs

original	phantom face	model attributes							
Provention of the second	il and	f	f	f	f			÷	i.
10 PA		f	f	f	m			*8	-
	APRIL 3. Common	f	f	m	m		12	20	105
a ()	1.5	f	f	f	f		ж.	- 22	28
16 J	Sile of the second s	f	f	f	f	35	25	50	15
	1 1	f	f	f	f	12	2	8	322
18 1	34 J	f	f	f	f	1	*	8	1.00

attributes determined: person is female, has no glasses, and is not bearded

attributes determined: person is female, has glasses, and i: not bearded

8 8

8 8

g

8

b

1

g

g

b b

b

attributes determined: person is male, has glasses, and is bearded

Conclusions

- The complexity barrier to IT's progress forces major changes in system development methodology
- The algorithmic division of labor is a major stumbling block
- The example of living structures shows the way
- A generic system architecture must be a primary goal
- Present activities must be encouraged and coordinated
- As time frame for a major transformation of IT we must envisage 20 years