ALAVLSI: attend-to-learn and learn-to-attend with analolgue, neuromorphic VLSI Coordinator: Jochen Braun

- * General achitecture for attention and learning
- ✤ Implement with multi-chip analogue VLSI
- * Classification of dynamic perceptual objects (optical flow, speech)

- Performance on natural stimuli (visual & auditory) comparable to human observers
- Spiking networks for saliency and for associative memory
- Software and hardware implementations of SN and AN (analogue VLSI with AER communication)
- ***** Feature space optimized for efficient and sparse representation of natural stimuli
- * Natural and synthetic stimuli of low dimensionality but rich perceptual content

Giacomo Indiveri, ETH Zurich

Saliency with analogue, neuromorphic VLSI

Paolo Del Giudice, ISS Rome, Stefano Fusi, Uni Berne

Working memory with Hebbian, spike-driven synapses

No stimulus selective activity

Bruno Olshausen, UC Davis Sparse coding of natural stimuli

Learned space-time-basis functions (200, 12 x 12 x 7) Training set: nature documentary

Competitive interaction between basis functions

Jochen Braun, Sue Denham, U Plymouth Natural and synthetic stimuli, task-specific feature spaces

Vision: transparent superposition of continuously changing visual objects

Audition: superposition of human speech, animal vocalisations, etc

