

ROSANA

R 0 S A N A

Representation Of Stimuli As Neural Activity

UCM: UAM: FhG-IBMT: IBMC: UEx: Universidad Complutense de Madrid Universidad Autonoma de Madrid Fraunhofer Institute for Biomedical Engineering Institute for Molecular and Cell Biology of Porto Univ. of Exeter

"Perception"

"Internal Representation" of the external world

R O S A N A

Determine the principles of coding of sensory stimuli

Interactions sensory inputs - activity of CNS neurons

we will be able to reproduce the same spatiotemporal pattern of activity

"Perception" Oscillations and Information processing

- Record the neural activity in PNS and CNS
- Develop mathematical models using experimental data

Our Experiment

Methodology

- Sieve microelectrodes
- Skin stimulator
- Sieve electrodes implantation
- Histological quantification of nerve regeneration
- ♦ Simultaneous recordings from the PNS CNS
- Data analysis
- Mathematical models

Sieve electrode design

- •54 ring electrodes (50/90 μm)
- •Electrodes material with platinum-black
- •Easy to contact the electrodes
- •Big stimulation counter electrodes distal and proximal
- •2 mm tubes as nerve channels

Sieve electrode design

- Improved mechanical fixation between electrode and silicone tube
 - 570 regeneration holes (40 μm)
 - Recording reference electrodes with no holes around the electrodes to reduce crosstalk
 - Two possible sizes for recording reference (ring and circle)

Electrode impedance for production and implantation controlling

Electrode impedance at 1 kHz (N=20)

Electrode Impedance

Defect	Absolute Value / kOhm		Phase / °	
	Mean	SD	Mean	SD
Demolished	1196	26	-77	0,78
Line crack	2218	50	-89,3	1,0
No connector contact	44 510	26 443	-92	27
Wet connector	1,65	1,02	-23	9,4
Non defect	16,8	1,4	-28,7	2,9

Electrode check:

R

0

S

A

N

A

Electrode impedance have to be between 5 kOhm and 50 kOhm at 1 kHz

Tools for electrode handling

Connection of the electrodes

R

0

S

A

N

A

- Current or voltage controlled
- Bipolar rectangular pulse shape

5cm

- Amplitude 0.05 mA 5 mA 0.1 V - 10 V
- Frequency 1 Hz 60 Hz
- Pulse width 10 μs 500 μs

- Positioning tool with guide pins and labelling
- •Connectionbox for distal and proximal electrodes
- Connector for 54 electrodes

Hand held stimulator

Stimulator

- 12 pins (6 x 2 grid) spacing 1.2 mm
- 0.6 mm diameter individually retractable pins (up to 3 mm)
- Piezoelectric bimorph actuators

- 4 mm
- Array of 15 pins with 1 mm row spacing
- Range of movement increased to 5 mm
- Variable drive voltage will allow variable movement

R O S A N A

Cat median nerve (Toluidine blue)

Strongly myelinated fibers

Unmyelinated fibers

Thiny myelinated fibers

R O S A N A

CD

R O S A N A

16

Active Microelectrode during an experiment

peripheral nerve recodings

DCN recordings

20 ms

100 ms

RATE HISTOGRAMS

R

0

S

A

N

A

PERIEVENT HISTOGRAMS

STIMULI SITE 2

20

STIMULI SITE 1

Experimental procedure

 Simultaneous monitoring of several nearby neurons
Wide band noise
Detection & Separation problems

Professional operators sorting spikes manually with tetrode electrodes do typically from 10 to 30% errors!!!

Performance using a single electrode is even lower (up to 50%)!!!!!

Objective: Extract time stamps of spiking events and assign them to different neurons (the more the better)

Ideal Solution

- Takes a raw data file and produces time stamps of spiking events of prominent cells (as much as possible)
- Fast
- Efficient in memory use
- Automatic
- Accounts for spike shape variation
- Resolve spike superimposition
- Reliable!!!
- Signal denoising
- Spike extraction independent of operator mistakes
- Spike shape recovering
- Automatic spike sorting with subset resorting

Developed packages:

- FilterSpikes (ver. 0.23*)
- DetectSpikes (ver. 0.35*)
- SortSpikes (ver. 0.52*)

FilterSpikes & DetectSpikes packages results:

SortSpikes package

Spike waveform with 64 points at 40 kHz rate Automatic classification with KlustaKwik May often over split or merge clusters.

Sorting on a subset improves performance

Badly separated spikes after 1st run

2000

1000

-1000

-2000

-3000

0

20

40

60

Improved cutting. 2nd run on **the subset**

Example of final classification

Feature space

R O S A N A 2000

1000

-1000

-2000

-3000 -

1000 N

-1000

-2000

-3000 L

20

20 40 60 80

40

60

R O S A N A

Mathematical modelling of neural networks

1. Role of subthreshold oscillations in the stimuli processing

2. Delay induced oscillatory phenomena (stability loss)

Network Organization

Minimal number of neurons in a cluster

Optimal cluster frequency distribution:

$$N = \frac{1}{f_m \tau_m}$$

 $f_m = \frac{(N+1)^m}{N(N-1)^{m-1}} F_{\min}$ (not linear!)

Condition for number of clusters: $\left(\frac{N+1}{N-1}\right)^M = \frac{F_{\text{max}}}{F}$

Example: For F_{min} =5Hz, F_{max} =15Hz, N=8 and M=7

Oscillatory Phenomena and Stability of Periodic Solutions in a Simple Neural Network with Delay^{*}

Delays occur:

1. In the signal transmission

2. In synaptic transmission

How does delay change the stability of neural network states?

Bifurcation parameters:

1. Global delay:
$$\tau = \tau_1 + \tau_2$$

2. Composite coupling: v = -abF'(0)G'(0)

 $\dot{u}_{1}(t) = -\mu_{1}u_{1}(t) + aF(u_{2}(t-\tau_{2}))$ $\dot{u}_{2}(t) = -\mu_{2}u_{2}(t) + bG(u_{1}(t-\tau_{1})) \text{ Pos}$

Positive sign - excitatory-inhibitory coupling Negative sign - couplings of the same type

Global existence of periodic solutions

- Delays can change the stability of neural network states
- Delay can cause delay-controlled periodic behavior
- Only composite coupling and global delay affect the system
- Periodic solution appears when the delay is large enough
- Most radical changes can occur for the excitatory-inhibitory configuration $_{30}$

Universidad Complutense de Madrid Universidad Autonoma de Madrid Fraunhofer Institute for Biomedical Engineering Institute for Molecular and Cell Biology of Porto Univ. of Exeter