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Experimentation is crucial to human progress at all scales, from society as a whole
to a young infant in its cradle. It allows us to elicit learning episodes suited to
our own needs and limitations. This paper develops active strategies for a robot
to acquire visual experience through simple experimental manipulation. The experi-
ments are oriented towards determining what parts of the environment are physically
coherent|that is, which parts will move together, and which are more or less inde-
pendent. We argue that following causal chains of events out from the robot’s body
into the environment allows for a very natural developmental progression of visual
competence, and relate this idea to results in neuroscience.
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1. Introduction

A truly autonomous robot needs to be able to explore and learn from its environ-
ment, since it cannot rely on receiving all the information it needs passively (Whaite
& Ferrie 1997). It is telling that some of the earliest autonomous robots ever built,
the tortoises of W. Grey Walter, were given the mock-Linnean designation Machina
speculatrix by their creator, to emphasize their exploratory behaviour, described as
`it explores its environment actively, persistently, systematically as most animals do’
(Walter 1950). These robots had very simple control circuitry, and their behaviour
depended greatly on the morphology and dynamics of their own bodies. This observa-
tion of the utility of a robot’s body has recurred over the years, perhaps most notably
in the work of Brooks et al. (1998). It has also played a role in active approaches to
machine vision, where sensors are embedded in a robotic platform and moved in a
manner that simpli¯es visual processing (Ballard 1991). Since perceiving the world
correctly comes so naturally to humans, and appears so free of e®ort, the motivation
for this work can be di±cult for those outside the ¯eld of vision research to grasp
at an intuitive level. For this reason, we begin our paper by seeking to clarify the
di±culties a robot faces in perceiving the world, and how its body can come to the
rescue.

One contribution of 16 to a Theme `Biologically inspired robotics’.
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a cross a binary cross ?

Figure 1. Three examples of crosses, following Manzotti & Tagliasco (2001). The human
ability to segment objects is not general purpose, and improves with experience.

Figure 2. A cube on a table. The edges of the table and cube happen to be aligned (dashed
line), the colours of the cube and table are not well separated, and the cube has a potentially
confusing surface pattern.

(a) The elusive object

Sensory information is intrinsically ambiguous, and very distant from the world
of well-de¯ned objects in which humans believe they live. What criterion should be
applied to distinguish one object from another? How can perception support such
a remarkable phenomenon as ¯gure{ground segmentation? Consider the example in
¯gure 1.

It is immediately clear that the drawing on the left is a cross. The intensity dif-
ference between the black cross and the white background is a powerful cue for
segmentation. It is slightly less clear that the 0s and 1s on the middle panel are still
a cross. What can we say about the array on the right? If we are not told otherwise
we might think this is just a random collection of numbers, since there is no obvious
criterion to perform the ¯gure{ground segmentation. But if we are told that the
criterion is in fact `prime numbers versus non-prime numbers’ then a cross can still
be identi¯ed.

While we have to be inventive to come up with a segmentation problem that tests
a human, we do not have to try hard at all to ¯nd something that ba²es our robots.
Figure 2 shows a robot’s-eye view of a cube sitting on a table. At ¯rst glance this
seems simple enough, but many rules of thumb used in machine vision for automatic
object segmentation fail in this particular case. And even an experienced human
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observer, diagnosing the cube as a separate object, based perhaps on its shadow
and subtle di®erences in the surface texture of the cube and table, could in fact be
mistaken: perhaps some malicious researcher has glued the cube tight to the table.
The only way to ¯nd out for sure is to take action, and start poking and prodding.
As early as 1734, Berkeley observed that

In these and the like instances the truth of the matter stands thus: having
of a long time experienced certain ideas, perceivable by touch, as distance,
tangible ¯gure, and solidity, to have been connected with certain ideas of
sight, I do upon perceiving these ideas of sight forthwith conclude what
tangible ideas are, by the wonted ordinary course of Nature like to follow.

Berkeley (1972)

In this paper, we provide support for a more nuanced proposition: that while it is
true that vision is full of ambiguity, this ambiguity evaporates when the robot can
reach out and come into contact with objects|even if it has no sense of touch! While
touch is certainly an important sense, we show that simply involving objects in a
causal chain of events initiated by the robot itself is enough to wipe away much of
the ambiguity that will plague a passive observer.

(b) Grounding vision in action

Much of computer vision is passive in nature, with the emphasis on watching the
world but not participating in it. There are advantages to moving beyond this to
exploit dynamic regularities of the environment (Ballard 1991). A robot has the
potential to examine its world using causality, by performing probing actions and
learning from the response. Tracing chains of causality from motor action to per-
ception (and back again) is important both to understand how the brain deals with
sensorimotor coordination and to implement those same functions in an arti¯cial
system, such as a humanoid robot. And, as a practical matter, the ability to per-
form `controlled experiments’ during the process of development, such as tapping an
object lightly, is crucial to getting to grips with an otherwise complex and uncertain
world.

Figure 3 illustrates three levels of causal complexity we would like our robot to
probe, so that it can develop robust, empirically founded representations of the world
around it (often referred to as `grounded’ representations (Brooks 1990)). The sim-
plest causal chain that the robot can experience is the perception of its own actions.
The temporal aspect is immediate: visual information is tightly synchronized to
motor commands. We use this strong correlation to identify parts of the robot body:
speci¯cally, the end-point of the arm. Once this causal connection has been estab-
lished, we can go further and use it to actively explore the boundaries of objects. In
this case, there is one more step in the causal chain, and the temporal nature of the
response may be delayed, since initiating a reaching movement does not immediately
elicit consequences in the environment.

In this paper, we propose that such causal probing can be arranged in a devel-
opmental sequence leading to a manipulation-driven representation of objects. We
present results for some important steps along such a sequence, and describe how we
plan to proceed. We argue that following this causal chain outwards will allow us to
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Figure 3. On the left, the robot establishes a causal connection between commanded motion
and its own manipulator (A), and then probes its manipulator’ s e® ect on an object (B). The
object then serves as a literal p̀oint of contact’ (C) to link robot manipulation with human
manipulation (D), as is required for a mirror-neuron-like representation.

approach the representational power of `mirror neurons’ (Gallese et al. 1996), where
a connection is made between our own actions and the actions of another.

2. Objects and actions in the human brain

The example of the cross composed of prime numbers is a novel (albeit unlikely)
type of segmentation in our experience as adult humans. We might imagine
that, in our infancy, we had to initially form a set of criteria to solve the
object-identi¯cation/segmentation problem in more mundane circumstances. We ask
whether we can discover these criteria during ontogenesis.

Humans and a small number of other primates are unique in their ability to manip-
ulate their environment using tools. Our capacities are mirrored in the brain by the
size of the cortex controlling them. Neuroscience has shown that our brains possess
large cortical areas devoted to the control of manipulation|a fact which is not sur-
prising, given that encephalization is believed to have evolved for the purpose of
adaptively controlling action (Maturana & Varela 1998).

A useful conceptual schema holds that visual information follows two distinct
pathways in the brain, namely, the dorsal and the ventral (Milner & Goodale 1995;
Ungerleider & Mishkin 1982). The dorsal pathway controls action directly and prag-
matically; conversely, the ventral takes care of more conceptual skills, such as object
recognition. Of course it is important to remember, when making this dichotomy,
that the two pathways are not completely segregated but rather complement each
other and interact in di®erent ways (Jeannerod 1997).

Objects are thought to maintain a double `identity’ depending on whether they
are used in perceptual or in motor tasks. The concept of size, for example, might be
represented multiple times in di®erent brain areas. Observation of agnosic patients
(Jeannerod 1997) shows an even more complicated relationship than the simple
dorsal{ventral dichotomy would suggest. Although some patients could not grasp
generic objects (e.g. cylinders), they could correctly preshape the hand to grasp
known objects (e.g. a lipstick); interpreted in terms of the two-pathway system, this
implies that the ventral representation of the object can supply the dorsal system
with size information. What we consciously perceive as `size’ is rather a collection of

Phil. Trans. R. Soc. Lond. A (2003)



Grounding vision 2169

di®erent percepts interacting in a complicated way, and under pathological circum-
stances they can be separated from each other. One of the `identities’ of objects is
thus connected to motor performance.

That such pathways develop and are not completely innate is suggested by the
results of Kovacs (2000). She has shown that perceptual grouping is slow to develop
and continues to improve well beyond early childhood (14 years). Long-range contour
integration was tested and this work elucidated how this ability develops to enable
extended spatial grouping. These results further suggest that the development of
action might precede that of categorization: it is well established that by four months
of age infants can process complex motion stimuli, depth, and colour. Roughly at the
same age, reaching becomes more consistent. That is, action comes ¯rst, supported
by the pragmatic use of diverse sensory modalities; conversely, perception is a long
developmental process. More studies are needed though to ascertain how the dorsal
pathway (action) in°uences the ventral (perception) both in situations like those
already mentioned and during ontogenesis.

Drawing more from the neural-science literature, the results of Fogassi et al. (1996)
and Graziano et al. (1997) have shown the existence of neurons that respond to
objects and are related to the description of the peripersonal space with respect to
reaching (area F4 and VIP). A subset of the F4 neurons have a somatosensory, visual
and motor receptive ¯eld. The visual receptive ¯eld extends in three dimensions from
a given body part, such as the forearm. The somatosensory receptive ¯eld is usually in
register with the visual one. Motor information is integrated into the representation
by maintaining the receptive ¯eld anchored to the corresponding body part (the
forearm in this example) irrespective of the relative position of the head and arm.
F4, together with areas in the parietal lobe, is thought to participate in the visual
to motor transformations required to control reaching.

While F4 is concerned with the proximal muscles (i.e. reaching), F5 controls more
distal muscles (i.e. the hand). Areas in the parietal lobe, such as AIP, also project
to F5 in the pre-motor cortex. For many years the pre-motor cortex was considered
just another area related solely to motor control. New studies (see Jeannerod 1997
for a review) have demonstrated that this is not the case. We have already described
the properties of the neurons in F4; similarly, researchers have identi¯ed neurons
in the area F5 of the frontal cortex (Fadiga et al. 2000) that are activated in two
situations: when the host is acting upon an object (e.g. grasping); and when looking
at the same object (visual response). The corresponding ¯ring patterns are quite
speci¯c, building a link between the size and shape of the object and the applied
grasp type (e.g. a small object requires a precision grip). These neurons are called
canonical. At the time, this was quite an astonishing discovery because area F5
was believed to be only a motor area. A possible interpretation is that the brain
stores a representation of objects in motor terms, and uses these representations to
generate an appropriate response to objects. Fagg & Arbib (1998) interpreted these
responses as the neural analogue of the a®ordances of Gibson (1977). In Gibson’s
theory, an a®ordance is a visual characteristic of an object which can elicit an action
without necessarily involving an object-recognition stage. It seems that areas AIP
and F5 are active in such a way as to provide the individual with a mechanism for
detecting a®ordances. F5 projects to the primary motor cortex and can therefore
control behaviour.
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The gap from object manipulation to hand-gesture production and recognition
is small. Gallese et al. (1996) extensively probed area F5. Using neurophysiologi-
cal recordings from behaving monkeys, they located a distinct class of neuron that
responds speci¯cally to actions on objects, rather than the mere presence of that
object at the point of ¯xation. A typical cell of this class (called mirror neuron)
indeed responds in two situations: when executing a manipulative gesture and when
observing somebody else executing the same action. These neurons provide a link
between the observation of somebody else’s and our own actions. The activation of
F5 is consistent with the idea that the brain internally reproduces/simulates the
observed actions. Mirror neurons are striking in their speci¯city of response. A neu-
ron that responds to a particular grasp type applied to an object will not respond if
the manual grasp is replaced with a tool, such as a pair of pliers. Along with their use
for the recognition of manipulative actions, mirror neurons are thought to support
imitative behaviours. An intriguing theory proposed by Rizzolatti & Arbib (1998)
associates mirror neurons to language. In Wohlscl�ager & Bekkering (2002) the role of
objects during an imitative task was tested. In this experiment, two situations were
compared: imitating another person’s gesture in the presence of a target object, or
without such a target. Reaction times showed that subjects were signi¯cantly faster
when imitating an action that is directed towards a target (such as an object sitting
on a table). Also, Woodward (1998) investigated the role of objects in the under-
standing of action performed by others. In a series of experiments she elucidated the
contribution that seeing an object makes for ¯ve-, six- and nine-month-old infants.
Woodward tested various group of infants using the preferential-looking paradigm.
First, during a habituation phase, the infants observed an adult reaching for one
of two toys. The positions of the toys were then exchanged, and the infant saw the
adult grasping the new toy in the same position, hence closely replicating the same
trajectory used during the habituation phase. Experiments showed that the infants
looked more frequently at the new grasped toy in spite of the trajectory they were
habituated to, which implies that they encoded the object identity into their inter-
pretation of the observed action. Additional experiments showed that the same e®ect
is not present if the action is performed using a mock-up of the hand rather than a
real human hand. Developmentally, the results showed that, by six months, infants
start encoding elements of the understanding of goal-directed actions, rather than
kinematic aspects of the observed action. Taken together, these results led Wood-
ward and others to hypothesize that the object and the goal-directedness of the
action represent an important component in the understanding of the intentions of
others.

3. Objects and actions in robotic systems

Certainly, vision and action are intertwined at a very basic level in humans. While
an experienced adult can interpret visual scenes perfectly well without acting upon
them, linking action and perception seems crucial to the developmental process that
leads to that competence. While not focusing on development, many researchers in
machine vision have adopted the view that vision and action need to be tightly
integrated for functional reasons. Their work is loosely termed `active vision’. A
vision system is said to be active if it is embedded within a physical platform that
can act to improve perceptual performance. For example, a robot’s cameras might
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Figure 4. Degrees of freedom (DOFs) of the robot Cog. The arms terminate either in a
primitive °̀ ipper’ or a four-¯ngered hand. The head, torso and arms together contain 22 DOFs.

servo a rapidly moving target in order to stabilize the image and keep the target in
view. In fact, active vision is often equated with moving cameras, although in this
paper we use it in a broader sense of any controllable resource recruited to serve
vision (including, in our case, arm motion).

Historically, a number of logically distinct ideas have often been associated with
active vision. The ¯rst is that vision should be approached within the context of
an overall task or purpose (Aloimonos et al. 1987). If an observer can engage in
controlled motion, it can integrate data from frame to frame to solve problems that
are ill-posed statically. Well-chosen motion can simplify the computation required
for widely studied vision problems, such as stereo matching (Bajcsy 1988; Ballard
1991). These interwoven ideas about active vision are teased apart in Tarr & Black
(1994).

In our work, we show that the entire body can usefully be recruited to cooperate
with the vision system, and we need not limit ourselves to just the head. In par-
ticular, we show that probing arm movements can be very revealing, and allow us
to tackle long-standing problems in machine vision such as ¯gure{ground separation
and object recognition in an innovative way. We demonstrate that simple poking
gestures (prodding, tapping, swiping, batting, etc.) are rich enough to evoke object
a®ordances such as rolling and to provide the kind of training data on object appear-
ance and behaviour needed to develop a robust perceptual system.

This work is implemented on the robot Cog, an upper-torso humanoid (Brooks et
al. 1999). Cog has two arms, each of which has six DOFs (see ¯gure 4). The joints
are driven by series-elastic actuators (Williamson 1999). The arm is not designed to
enact trajectories with high ¯delity. For that a very sti® arm is preferable. Rather,
it is designed to perform well when interacting with a poorly characterized environ-
ment, where collisions are frequent and informative events. Cog runs an attentional
system consisting of a set of pre-attentive ¯lters sensitive to motion, colour and
binocular disparity. The di®erent ¯lters generate information on the likelihood that
something interesting is happening in a certain region of the image. A voting mech-
anism is used to `decide’ what to attend and track next. The pre-attentive ¯lters are
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implemented on a space-variant imaging system, which mimics the distribution of
photoreceptors in the human retina, as in (Sandini & Tagliasco 1980). The atten-
tional system uses vision and non-visual sensors (e.g. inertial) to generate a range of
oculomotor behaviours. Examples are saccades, smooth pursuit, vergence, and the
vestibulo-ocular re°ex.

4. Perceiving the body in action

Motion of the arm may generate optic °ow directly through the changing projection
of the arm itself, or indirectly through an object that the arm is in contact with.
While the relationship between the optic °ow and the physical motion is likely to
be complex, the correlation of the two events in time should be exceedingly precise.
This time-correlation can be used as a `signature’ to identify parts of the scene that
are being in°uenced by the robot’s motion, even in the presence of other distracting
motion sources. In this section, we show how this tight correlation can be used to
localize the arm in the image without any prior information about visual appearance.

(a) Reaching out

The ¯rst step towards manipulation is to reach objects within the workspace. If
we assume targets are chosen visually, then ideally we need to also locate the end-
e®ector visually to generate an error signal for closed-loop control. Some element of
open-loop control is necessary, since the end-point may not always be in the ¯eld
of view (for example, when it is in its resting position), and the overall reaching
operation can be made faster with a feed-forward contribution to the control.

The simplest possible open-loop control would map directly from a ¯xation point
to the arm motor commands needed to reach that point (Metta et al. 1999) using
a stereotyped trajectory, perhaps using postural primitives (Mussa-Ivaldi & Giszter
1992). If we can ¯xate the end-e®ector, then it is possible to learn this map by
exploring di®erent combinations of direction of gaze versus arm position (Marjanovi¶c
et al. 1996; Metta et al. 1999). So locating the end-e®ector visually is key both to
closed-loop control and to training a feed-forward model. We shall demonstrate that
this localization can be performed without knowledge of the arm’s appearance, and
without assuming that the arm is the only moving object in the scene.

(b) Localizing the arm visually

The robot is not a passive observer of its arm, but rather the initiator of its
movement. This can be used to distinguish the arm from parts of the environment
that are more weakly a®ected by the robot. The arm of a robot was detected in
Marjanovi¶c et al. (1996) by simply waving it and assuming it was the only moving
object in the scene. We take a similar approach here, but use a more stringent test
of looking for optic °ow that is correlated with the motor commands to the arm.
This allows unrelated movement to be ignored. Even if a capricious engineer were
to replace the robot’s arm with one of a very di®erent appearance, and then stand
around waving the old arm, this detection method will not be fooled.

The actual relationship between arm movements and the optic °ow they generate
is complex. Since the robot is in control of the arm, it can choose to move it in a way
that bypasses this complexity. In particular, if the arm rapidly reverses direction,
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Figure 5. An example of the correlation between optic ° ow and arm movement. The traces show
the movement of the wrist joint (upper plot) and optic ° ow sampled on the arm (middle plot)
and away from it (lower plot). As the arm generates a repetitive movement, the oscillation is
clearly visible in the middle plot and absent in the lower plot. Before and after the movement,
the head is free to saccade, generating the other spikes seen in the optic ° ow.

the optic °ow at that instant will change in sign, giving a tight, clean temporal
correlation. Since our optic °ow processing is coarse (a 16 £ 16 grid over a 128 £ 128
image at 15 Hz), we simply repeat this reversal a number of times to get a strong
correlation signal during training. With each reversal the probability of correlating
with unrelated motion in the environment decreases.

Figure 5 shows an example of this procedure in operation, comparing the velocity
of the wrist with the optic °ow at two positions in the image plane. A trace taken
from a position away from the arm shows no correlation, while conversely the °ow at
a position on the wrist is strongly di®erent from zero over the same period of time.
Figure 6 shows examples of detection of the arm and rejection of a distractor.

(c) Localizing the arm using proprioception

The localization method for the arm described so far relies on a relatively long
`signature’ movement that would slow down reaching. This can be overcome by
learning a function to estimate the location of the arm in the image plane from
proprioceptive information (joint angles) during an exploratory phase, and using that
to constrain arm localization during actual operation. Figure 7 shows the resulting
behaviour after ca. 20 min of real-time learning.

5. Perceiving actions on objects

Now that the robot knows something about its arm, it can start to use it to explore
its environment. When the arm enters into contact with an object, one of several
outcomes are possible. If the object is large, heavy, or otherwise unyielding, motion
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Figure 6. Detecting the arm/gripper through motion correlation. The robot’ s point of view and
the optic ° ow generated are shown on the left. On the right are the results of correlation. Large
circles represent the results of applying a region growing procedure to the optic ° ow. Here the
° ow corresponds to the robot’ s arm and the experimenter’ s hand in the background. The small
circle marks the point of maximum correlation, identifying the regions that correspond to the
robot’ s own arm.

of the arm may simply be resisted without any visible e®ect. Such objects are of
little interest, except in their role as obstacles, since the robot will not be able to
manipulate them. But if the object is smaller, it is likely to move somewhat in
response to the nudge of the arm. This movement will be temporally correlated with
the time of impact, and will be connected spatially to the end-e®ector|constraints
that are not available in passive scenarios (Birch¯eld 1999). If the object is reasonably
rigid, and the movement has some component in parallel to the image plane, the
result is likely to be a °ow ¯eld whose extent re°ects the physical boundaries of the
object. This visible response to the robot’s action can be used to re¯ne its model of
the object’s extent, which may be inaccurate. For example, in the scene in ¯gure 2 (a
cube sitting on a table), the small inner square on the cube’s surface pattern might be
selected as a target. The robot can certainly reach towards this target, but grasping
it would prove di±cult without a correct estimate of the object’s physical extent. In
this section we show how the robot can experimentally determine an object’s extent
using the same idea of correlated motion used earlier to detect its own arm.

Phil. Trans. R. Soc. Lond. A (2003)
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Figure 7. Predicting the location of the arm in the image as the head and arm change position.
The rectangle represents the predicted position of the arm using the map learned during a
20 min training run. The predicted position just needs to be su± ciently accurate to initialize a
visual search for the exact position of the end-e® ector.

begin find end-effector sweep contact! withdraw

Figure 8. The upper sequence shows an arm extending into a workspace, tapping an object
and retracting. This is an exploratory mechanism for ¯nding the boundaries of objects, and
essentially requires the arm to collide with objects under normal operation, rather than as an
occasional accident. The lower sequence shows the shape identi¯ed from the tap using simple
image di® erencing and ° ipper tracking.

(a) Making an impact

Figure 8 shows how a `poking’ movement can be used to re¯ne a target. During
this operation, the arm begins by extending outwards from the resting position. For
this simple motivating example, the end-e®ector (or `°ipper’) is localized as the arm
sweeps rapidly outwards using the heuristic that it lies at the highest point of the
region of optic °ow swept out by the arm in the image (the head orientation and
reaching trajectory are controlled so that this is true). The arm is driven outward into
the neighbourhood of the target which we wish to de¯ne, stopping if an unexpected
obstruction is reached. If no obstruction is met, the °ipper makes a gentle sweep
of the area around the target. This minimizes the opportunity for the motion of
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the arm itself to cause confusion; the motion of the °ipper is bounded around the
endpoint whose location we know from tracking during the extension phase, and
can be subtracted easily. Flow not connected to the end-e®ector can be ignored as a
distractor.

The sequence shown in ¯gure 8 is about the simplest case possible for segmenting
the motion of the object, since most of the arm is stationary when contact occurs. In
practice, we would rather have fewer constraints on the motion of the arm, so we can
approach the object from any convenient direction. We found that it was possible
to attain this °exibility, without losing the simplicity of object segmentation that
poking brings, by exploiting the unique visual opportunity a®orded by the moment
of impact, as described in the next section. Another important question is `where
does the target for poking come from?’. This is in fact very straightforward. As
described in x 3, Cog has an attentional system that allows it to locate and track
salient visual stimuli. This is based entirely on low-level features, such as colour,
motion and binocular disparity, that are well de¯ned on small patches of the image,
as opposed to features such as shape, size and pose, which only make sense on well-
segmented objects. If Cog’s attention system locates a patch of the image that seems
reachable (based on disparity and overall robot pose), it will reach toward it and
attempt to poke it, so that it can determine the physical extent of the object to
which that patch belongs. A human can easily encourage this behaviour by bringing
an object close to the robot, moving it until the robot ¯xates it, and then leaving it
on the table. The robot will track the object down to the table (without the need or
the ability to actually segment it), observe that it can be reached, and poke it.

(b) The moment of (ground) truth

How can we detect when the arm collides with an object? One natural possibility
would be to use proprioceptive or tactile information from the arm itself. Another
possibility is to detect the collision visually. This is the method we use, since it allows
collision detection to be applied to human arm motion, a situation where the robot
does not have access to any privileged information about the motion. When the
robot is attempting to poke a target, it keeps the target ¯xated, so that the image
processing does not need to compensate for egomotion. Under these conditions, it is
possible to detect motion using image di®erencing. This is a very simple technique for
detecting motion by simply subtracting successive frames coming from a camera and
looking for pixel-level di®erences. A moving object that has some contrast with the
background over which it is moving will generate such di®erences. Of course, pixel
di®erences can also be generated by changes in illumination, cast shadows, the refresh
rate of computer monitors, movement of the camera itself, etc. A related technique
called background modelling tries to estimate the appearance of the ¯xed, stationary
background of a scene, and then subtract the current view from the reference to detect
new foreground. Cog uses such a technique to detect motion while it is ¯xating a
target.

Figure 9 shows the sequence of processing steps taken as the arm approaches and
comes into contact with a target. As the arm approaches, its motion is tracked very
coarsely in real-time, and areas it passes through are marked as `clear’ of the object.
An impact event is detected through a very characteristic sudden appearance of optic
°ow connected with the arm, but spread across a much wider distance than the arm

Phil. Trans. R. Soc. Lond. A (2003)



Grounding vision 2177

fixate target track visual
motion...

(...including
cast shadows)

detect moment
of impact

separate objectseparate arm,
object motion

Figure 9. The moment of impact is detected visually by the sudden expansion of motion away
from the arm. Motion before and after contact is compared to gather information for segmen-
tation.

impact

impact

motion

motion

segmentation

segmentation

’side tap’

’back-slap’

Figure 10. Cog batting a cube around. The top row shows the ° ipper poking an object from the
side, turning it slightly. The second row shows Cog batting an object away. The images in the
¯rst column are frames prior to a collision. The second column shows the actual impact. The
third column shows the motion signal at the point of contact. The bright regions in the images
in the ¯nal column show the segmentations produced for the object.

could possibly have moved in the time available. Once this impact is detected, we
start to process at high resolution (and drop brie°y out of real-time operation for a
few seconds). The raw-motion signature generated by the collision is computed. The
translational component of the arm motion at the point of contact is also computed,
so that motion present in previous frames can be aligned with the collision frame,
and motion associated with the arm can be isolated from motion due to the target
object. Since the impact may occur just before a frame is sampled (every 30 ms) and
so generate a relatively weak motion signature, motion information from one frame
after collision is projected back and pooled with motion information in the collision
frame. In the absence of strong texture, there may be little apparent motion in the
interior of the object, so we recruit a maximum-°ow algorithm due to Boykov &
Kolmogorov (2001) to ¯ll in such regions e±ciently. Figure 10 shows examples of
segmentations generated by very di®erent poking operations: one a gentle tap from
the side, the other a violent `back-slap’, striking the object away from the robot.
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Figure 11. Results of a training session, where a toy cube was repeatedly o® ered to the robot
for poking. Each image of the cube corresponds to the segmentation found for it during a single
poke. The most common failure mode is inclusion of the robot arm in the segmentation.

(c) An operational de¯nition of objecthood

The poking operation gives clear results for a rigid object that is free to move.
What happens for non-rigid objects and objects that are attached to other objects?
Here the results of poking are likely to be more complicated to interpret|but in
a sense this is a good sign, since it is in just such cases that the idea of an object
becomes less well-de¯ned. Poking has the potential to o®er an operational theory
of `objecthood’ that is more tractable than a vision-only approach might give, and
which cleaves better to the true nature of physical assemblages. The idea of a physical
object is rarely completely coherent, since it depends on where you draw its boundary
and that may well be task dependent. Poking allows the robot to determine what
part of its environment move as a mass when disturbed, which is exactly what we
need to know for manipulation. As an operational de¯nition of object, this has the
attractive property of breaking down into ambiguity in the right circumstances, such
as for large interconnected messes, °oppy formless ones, liquids, and so on. Poking
also gives the robot the opportunity to collect many views of a single object, and so
we can hope to deal with recognizing objects like the cube shown in ¯gure 11, which
look di®erent from every side.

6. Developing mirror neurons

Poking moves us one step outwards on a causal chain away from the robot and into
the world, and gives a simple experimental procedure for segmenting objects. There
are many possible elaborations of this method, all of which lead to a vision system
that is tuned to acquiring data about an object by seeing it manipulated by the robot.
An interesting question then is whether the system could extract useful information
from seeing an object manipulated by someone else. In the case of poking, the robot
needs to be able to estimate the moment of contact and to track the arm su±ciently
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Figure 12. Probability of observing a roll along a particular direction for the set of four objects
used in Cog’ s experiments. Abscissae represent the di® erence between the principal axis of the
object and the observed direction of movement. Ordinates are the estimated probability. The
principal axis is computed using the second Hu moment of the object’ s silhouette (Hu 1962).
The p̀ointedness’ or anisotropy of the silhouette is also measured from a higher order moment;
this is low when the object has no well-de¯ned principal axis, as is the case for the cube and
the ball. The car and bottle have clear directions in which they tend to roll. In contrast, the
cube slides, and the ball rolls, in any direction. These histograms represent the accumulation of
many trials, and average over the complicated dynamics of the objects and the robot’ s arm to
capture an overall trend that is simple enough for the robot to actually exploit.

well to distinguish it from the object being poked. We are interested in how the
robot might learn to do this. One approach is to chain outwards from an object the
robot has poked. If someone else moves the object, we can reverse the logic used in
poking|where the motion of the manipulator identi¯ed the object|and identify a
foreign manipulator through its e®ect on the object.

We designed two experiments that use poking and the visual segmentation
described in the previous sections to probe the structure of objects and control
behaviour on the basis of their a®ordances. Further, although poking gives us a
simple procedure for segmenting objects, the procedure would be nevertheless incon-
venient in many situations if we had to poke an object every time we needed to
grasp it. A better solution is to learn from experience about the behaviour, visual
appearance and physical properties of objects.

In the ¯rst experiment, the robot poked a small set of objects (an orange-juice
bottle, a toy car, a cube and a coloured ball) using one of four possible actions (the
motor repertoire). Actions are labelled for convenience as `pull in’, `side tap’, `push
away’ and `back-slap’ (see, for example, ¯gure 10). The toy car and the bottle have
a de¯nite principal axis that can be easily extracted from the segmented image.
They also tend to roll along a de¯nite direction with respect to their principal axis.
These visual and physical properties of the objects can be acquired automatically by
the robot simply by poking the same object many times (about 100 in our experi-
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ment). The results are shown in ¯gure 12. We plot there the estimated probability
of observing each of the objects rolling along a particular direction with respect to
its principal axis. Di®erent trials are clustered using colour information. In fact, in
this case, colour is su±cient to distinguish the objects from each other. The next
step is to acquire an understanding of poking. This is easily obtained from the same
training set. Instead of considering each object separately here, we simply measured
the average direction of movement given a certain action. In practice, the robot auto-
matically learns that poking from the left causes the object to slide/roll to the right.
A similar consideration applies to the other actions.

At the end of the learning procedure the robot has built a representation of each
object in terms of

(i) pictorial information in the form of colour histograms, following Swain & Bal-
lard (1991);

(ii) a measure of the average area of the object, an index of the elongation of the
object with respect to its principal axis, and a set of Hu moments (Hu 1962);

(iii) detailed histograms of the displacement of the object given that a particular
motor primitive was used with respect to the initial orientation of the object;

(iv) the summary histograms shown in ¯gure 12, which capture the overall response
of each object to poking.

The learning procedure is designed to be robust, with data gathered opportunisti-
cally during the unconstrained interaction of a human with the robot. For example,
while the robot was being trained, a teenager visiting the laboratory happened to
wander by the robot, and became curious as to what it was doing. He put his base-
ball cap on Cog’s table, and it promptly got poked, was correctly segmented, and
became part of the robot’s training data (it was clustered by colour with the similarly
coloured ball).

After the training stage, if one of the known objects is presented to Cog, the object
is recognized, localized and its orientation estimated (principal axis). Recognition
and localization are based on the same colour histogram procedure used during
training (Swain & Ballard 1991). Cog then uses its understanding of the a®ordance
of the object (¯gure 12) and of the geometry of poking to make the object roll. The
whole localization procedure has an error between 10¯ and 25¯, which proved to be
acceptable for our experiment. We performed a simple qualitative test of the overall
performance of the robot. Out of 100 trials the robot made 15 mistakes. A trial was
classi¯ed as `mistaken’ if the robot failed to poke the object it was presented with in
the direction that would make it roll. The judgements of the appropriate direction,
and whether the robot succeeded in actually achieving it, were made by one of the
authors while observing the behaviour of the robot. Twelve of the mistakes were
due to imprecise control, for example, the end point touched the object earlier than
expected, moving the object outside the ¯eld of view. The remainders (three errors)
were genuine mistakes due to misinterpretation of the object position/orientation.
Another potential mistake that may occur is if the robot misidenti¯es an object, and,
for example, believes it sees a bottle when it in fact sees a car. Then the robot will
poke the object the wrong way even if it correctly determines the object’s position
and orientation.
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initial position

final position

Figure 13. An example of observed sequence. Frames around the instant of impact are shown.
The initial position and ¯nal position after 12 frames are indicated.

This experiment represents an analogue of the response of F5/AIP as explained in
Arbib’s model (Fagg & Arbib 1998) in that a speci¯c structure of the robot detects
the a®ordance of the object and links it to the generation of behaviour. This is also
the ¯rst stage of the development of more complex behaviours which rely on the
understanding of objects as physical entities with speci¯c properties.

With the knowledge about objects collected in the previous experiment we can
then set up a second experiment, where the robot observes a human performing
an action. In fact, the same visual processing used for analysing a robot-generated
action can also be used in this situation, to detect contact and segment the object
from the human arm. The ¯rst obvious step the robot can take is to identify the action
observed with respect to its own motor vocabulary. This is easily done by comparing
the displacement of the object with the four possible actions and by choosing the
action whose e®ects are closer to the observed displacement. This procedure is orders
of magnitude simpler than trying to completely characterize the action in terms of
the observed kinematics of the movement. Here the complexity of the data we need
to obtain is somewhat proportional to the complexity of the goal rather than that
of the structure/skill of the foreign manipulator.

The robot can also mimic the observed behaviour if it happens to see the same
object again. This requires another piece of information. The angle between the a®or-
dance of the object (preferred direction of motion) and the observed displacement is
measured. During mimicry the object is localized as in the previous experiment and
the action which is most likely to produce the same observed angle (relative to the
object) is generated. If, for example, the car was poked at right angles with respect
to its principal axis, Cog would mimic the action by poking the car at right angles,
despite the fact that the car’s preferred behaviour is to move along its principal axis.
Examples of observation of poking and generation of mimicry actions are shown in
¯gures 13 and 14.

As we described before, mirror neurons respond when either watching somebody
else performing a manipulative action or when actually manipulating an object.
They can be thought of as an association map which links together the observation
of a manipulative action performed by somebody else with the neural representation
of one’s own action. The question of whether a mirror-like representation can be
autonomously developed by the robot (or a human for that matter) can then be
answered. The association map can be constructed by identifying when the goal and
the object are the same irrespective of who is the actor. Actions that lead to the
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initial position final position

initial position final position

Figure 14. Two examples of mimicry following the observation of ¯gure 13. Cog mimics the goal
of the action (poking along the principal axis) rather than the trajectory followed by the toy car.

A

B

within A’s brain...

object

goal

B doing object

A doing

Figure 15. Mirror neurons and causality: from the observer’ s point of view (A), understanding
B’ s action means mapping it onto the observer’ s own motor repertoire. If the causal chain leading
to the goal is already in place (lower branch of the graph) then the acquisition of a mirror neuron
for this particular action/object is a matter of building and linking the upper part of the chain
to the lower one. There are various opportunities to reinforce this link either at the object level,
at the goal level or both.

same consequences are thus part of the same equivalence class. This is exactly what
mirror neurons represent.

Figure 15 shows this causal chain in action. There is a series of interesting
behaviours that can be realized based on mirror neurons. Mimicry is an obvious
application, since it requires just this type of mapping between other and self in
terms of motor actions. Another important application is the prediction of future
behaviour from current actions, or even inverting the causal relation to ¯nd the
action that most likely will lead to the desired consequence.
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7. Discussion and conclusions

In this paper, we showed how causality can be probed at di®erent levels by the robot.
Initially the environment was the body of the robot itself, then later a carefully
circumscribed interaction with the outside world. This is reminiscent of Piaget’s
distinction between primary and secondary circular reactions (Ginsburg & Opper
1978). Objects are central to interacting with the outside world. We raised the issue
of how an agent can autonomously acquire a working de¯nition of objects.

The number of papers written on techniques for visual segmentation is vast. Meth-
ods for characterizing the shape of an object through tactile information are also
being developed, such as shape from probing (Paulos 1999) or pushing (Moll & Erd-
mann 2001). But while it has long been known that motor strategies can aid vision
(Ballard 1991), work on active vision has focused almost exclusively on moving cam-
eras. There is much to be gained by bringing a manipulator into the equation. For
example, Tsikos & Bajcsy (1991) demonstrated how complex arrangements of blocks
could be automatically separated physically using a robot-mounted suction tool. This
is a very proactive, `take charge’ style of segmentation, and it completely changes the
accepted rules of the object segmentation `game’. The implications may be far reach-
ing. For example, we have shown that, without any prior knowledge of the human
form, the robot can identify episodes when a human is manipulating objects that are
familiar to the robot purely by the operational similarity of the human arm and its
own manipulator in this situation.

This work is an integrated `proof of concept’, and almost every individual compo-
nent within it could be improved considerably. For example, there are much more
sophisticated techniques for object recognition and localization than ours (e.g. Schiele
& Crowley 2000). The key technical contribution of this paper is not the recognition
method used, but the fact that the robot can autonomously collect all the training
data it needs using poking. Once that is possible, any recognition method could be
trained from these data, and we expect that our system can be extended to work
with large numbers of objects. Another rather under-developed component in our
work is the robot’s motor control and action repertoire. It is not clear how well our
system will scale as new actions are added, but we have at least demonstrated that
recognizing the actions of others does not necessarily require a full-blown kinematics
and three-dimensional localization/interpretation of the motion of the human body.

We have related our work to some very interesting results from neurobiology that
have implications for sensorimotor integration, such as the discovery of mirror neu-
rons. Our view is that, while biologists are doing a good job of elucidating what
mirror neurons are and how they operate, work like ours can more readily clarify
why they are useful in practice. We believe the answer lies in the developmental pro-
cess. A creature created fully formed could perhaps operate just ¯ne without mirror
neurons, but reaching adult competence from a more primitive stage requires con-
tinuously interleaving perception with experimental action: a situation that seems
to call for mirror neurons and similar machinery. Our goal has been to build a robot
capable of such experimentation, and to identify speci¯c functional advantages of
mirror-like representation in the development of its visual competence. Knowledge
of functional advantages could suggest new and interesting relationships for biolo-
gists to look for that they may not have thought of (since they have never tried to
build a vision system themselves).
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Many people have contributed to developing the Cog platform (Brooks et al. 1999). This work
bene¯ted from discussions with Charles Kemp and Giulio Sandini, and the perceptive comments
of reviewers. Funds for this project were provided by DARPA (contract number DABT 63-00-
C-10102), and by the Nippon Telegraph and Telephone Corporation as part of the NTT/MIT
Collaboration Agreement.
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