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SUMMARY AND CONCLUSIONS 

1. Using the two-dimensional (2D) spatial 
and spectral response profiles described in 
the previous two reports, we test Daugman’s 
(7) generalization of Marcelja’s hypothesis 
(26) that simple receptive fields belong to a 
class of linear spatial filters analogous to 
those described by Gabor ( 16) and referred to 
here as 2D Gabor filters. 

2. In the space domain, we found 2D 
Gabor filters that fit the 2D spatial response 
profile of each simple cell in the least- 
squared error sense (with a simplex algo- 
rithm), and we show that the residual error is 
devoid of spatial structure and statistically 
indistinguishable from random error. 

3. Although a rigorous statistical ap- 
proach was not possible with our spectral 
data, we also found a Gabor function that fit 
the 2D spectral response profile of each sim- 
ple cell and observed that the residual errors 
are everywhere small and unstructured. 

4. As an assay of spatial linearity in two 
dimensions, on which the applicability of 
Gabor theory is dependent, we compare the 
filter parameters estimated from the inde- 
pendent 2D spatial and spectral measure- 
ments described above. Estimates of most 
parameters from the two domains are highly 
correlated, indicating that assumptions 
about spatial linearity are valid. 

5. Finally, we show that the functional 
form of the 2D Gabor filter provides a con- 
cise mathematical expression, which incor- 
porates the important spatial characteristics 
of simple receptive fields demonstrated in 
the previous two reports. Prominent here are 
1) Cartesian separable spatial response pro- 
files, 2) spatial receptive fields with staggered 

subregion placement, 3) Cartesian separable 
spectral response profiles, 4) spectral re- 
sponse profiles with axes of symmetry not 
including the origin, and 5) the uniform dis- 
tribution of spatial phase angles. 

6. We conclude that the Gabor function 
provides a useful and reasonably accurate 
description of most spatial aspects of simple 
receptive fields. Thus it seems that an opti- 
mal strategy has evolved for sampling images 
simultaneously in the 2D spatial and spatial 
frequency domains. 

INTRODUCTION 

Our concepts of visual information pro- 
cessing in mammalian striate cortex have 
been dominated by two major classes of ex- 
perimental observation. First, the receptive 
fields of striate neurons are well defined, re- 
stricted to small regions of space, and in the 
case of simple cells, highly structured (17). 
Second, striate neurons respond to narrow 
ranges of stimulus orientation (17) and spa- 
tial frequency (6), the angular and radial 
polar coordinates of the two-dimensional 
(2D) spatial frequency domain. These obser- \ 
vations have given rise to divergent theories 
according to which striate cells have been 
considered either as feature detectors (27, 
28), or as spatial frequency filters (9, 25). 

Th.ese two descriptions are in fact compat- 
ible. Once a mechanism is found to have lin- 
ear response properties, filter theory becomes 
applicable, and the debate reduces to the 
question of whether the mechanism is more 
sharply tuned in the space domain or the 
spatial frequency domain (2, 3 1). The resolu- 
tion (sharpness of tuning) of a filter in either 
domain is reciprocally related to its resolu- 
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tion in the other. For instance, sharpening 
resolution in the space domain sacrifices res- 
olution in the spatial frequency domain. 
Gabor (16) described a unique family of lin- 
ear filters that behave optimally under this 
uncertainty principle in the sense that their 
simultaneous resolution in the two domains 
is maximal. Along one axis, the spatial struc- 
ture of simple receptive fields bears a re- 
markable resemblance to Gabor’s family of 
linear filters (26), suggesting that simple re- 
ceptive fields provide the best possible simul- 
taneous description of the spatial position 
and spectral content of visual stimuli. 

Simple receptive fields, like retinal images 
themselves, are 2D in space. If Gabor’s opti- 
mization principle is to apply to spatial vi- 
sion, it must first be generalized to 2D. 
Daugman (7) noted that in 2D form, resolu- 
tion for the two coordinates of spatial posi- 
tion enters into an uncertainty relation with 
resolution for the two coordinates of the 2D 
spatial frequency domain (interpretable as 
orientation and spatial frequency), and that 
the optimal solution to this joint 2D uncer- 
tainty problem embraces a family of func- 
tions consisting of bivariate elliptic Gaus- 
sians modulated by sinusoidal plane waves. 
Following Daugman, we refer to these func- 
tions as 2D Gabor filters. 

This paper describes our efforts to test the 
hypothesis that simple receptive fields in cat 
striate cortex are linear filters having the 
functional form of 2D Gabor filters. Verifi- 
cation of this hypothesis would result in a 
mathematical scheme unifying key proper- 
ties of simple receptive fields: periodicity 
along the width axis, summation along the 
length axis, spatial frequency tuning, and ori- 
entation tuning. Like the well-known differ- 
ence-of-Gaussians model of retinal ganglion 
cell receptive fields (39, the 2D Gabor filter 
model would provide a single expression de- 
scribing the structure of simple cell receptive 
fields in two spatial dimensions. It would 
suggest that the optimization principle on 
which the 2D Gabor filter is based can be 
applied to problems in visual information 
processing, and it would indicate that an ef- 
ficient strategy is used to represent images in 
the striate cortex. Because these filters opti- 
mize simultaneous resolution in space and 
spatial frequency, they would minimize the 
number of filters (cells) required to represent 

these two aspects of the information content 
of images. 

METHODS 

To fairly evaluate the 2D Gabor filter hypoth- 
esis, we must allow for its general form (7). The 
optimality constraints permit an elliptic Gaussian 
of arbitrary orientation, spatial variances, and 
spatial location, modulated by a sinusoid of arbi- 
trary spatial frequency, orientation, and spatial 
phase angle. In the discussion that follows, we 
make explicit the forms we may expect to observe 
under this hypothesis. 

Observable form of the 20 Gaborfilter 
in the space domain 

A 2D elliptic Gaussian centered on the origin of 
a Cartesian coordinate system, with major and 
minor axes parallel to the coordinate axes can be 
written 

w(x, y) = exp[- l/2(x2/a2 + y2/b2)] 

where a2 is variance in the x direction and b2 is 
variance in the y  direction. The elliptic Gaussian 
can be centered at any desired spatial location by 
translating (t) coordinates through the desired 
spatial offsets x0 and yo 

SC, = x - x0 

Yt = Y - Yo 

The major and minor axes of the Gaussian (g) 
can be aligned in an arbitrary orientation by a 
rotation of coordinates through a counterclock- 
wise angle A using 

xg = xt cos (A) -- 3/t sin (A) 

yg = x, sin (A) + 9/t cos (A) 

Using these substitutions we can write an equa- 
tion for an elliptic Gaussian of arbitrary orienta- 
tion centered at an arbitrary spatial coordinate as 

w(x, y) = exp[ - I /2(xg2/a2 + yg2/b2)] 

This function has five free parameters: a2 and 
b2 are the spatial variances in the xg and yg direc- 
tions, respectively; ~0 and y. are the x and y  loca- 
tions of the center with respect to the original co- 
ordinate system; A specifies the rotation of the 
coordinates on which the Gaussian is given with 
respect to the original coordinate system. The pa- 
rameters x0, yo, and A are implicit from the sub- 
stitutions. Figure II? illustrates an elliptic Gaus- 
sian. 

A 2D sinusoidal plane wave can be written 

m(x, y) = exp[-2myuo.x + Voy)] 

where U. and V. are spatial frequencies (in cpd) in 
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Space Domain Frequency Domain 

A Plane wave D lmpulses 

B Elliptic Gaussian E Elliptic Gaussian 

C 2D Gabor filter 
spatial response profile 

F 2D Gabor filter 
spectral response profile 

FIG. 1. Structure of two-dimensional (2D) Gabor filters in the space (left) and spatial frequency (right) domains. 
In the space domain, a 2D Gabor filter (C) can be described as the product of a sinusoidal plane wave (A) and a 
bivariate elliptic Gaussian (B). In the spatial frequency domain, a 2D Gabor filter (F) can be described as the 
convolution of a pair of impulses at a specific frequency (D) and an elliptic Gaussian (E). Graphs in the left- and 
right-hand columns are of Fourier transform pairs. The coordinates of the 2D space domain are illustrated in B. The 
surface Y is a function of the two Cartesian variables x and y. The coordinates of the 2D spatial frequency domain are 
illustrated in E. The surface R can be thought of as a function of the polar variables spatial frequency (the radial axis 
F) and orientation (the angular axis e). In B and -E, the axes have been drawn above the base plane for clarity. 

the x and y  directions, respectively. Using Euler’s The optimality of the 2D Cabor filter applies 
formula, this can be written only to the filter in its complex form. In an exper- 

m(x, y) = cos [-274 Ufl+ Vi&] 
iment we can observe only real signals (here, the 
cosine term). As before, there is no unique prop- 

+ i sin [-27r(U@ + v&)] erty of the coordinate system on which we collect 
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our data, and we can choose some other origin for 
the modulation term. It should be noted that the 
origin of coordinates for the modulation term is 
quite independent of that for the elliptic Gaussian 
term. In particular, we can translate our coordi- 
nate system by X, and y, 

quency, relative orientation, and relative phase) 
fully characterize the 2D Gabor filter in its most 
general form. 

m(4 Y) = cos { -2Wo(x - &l> + v,(Y - J4n)l) 

and by rearranging 

These two constant translation parameters may 
be concatenated, giving 

m(x, v) = cos [-274 Ufl+ V,y) -- P] 

where P = (Uox, + V&J*). 

Observable form in the frequency domain 
In the 2D spatial frequency domain, we must 

allow for the same variations in filter structure as 
we allow for in the space domain. There is a fur- 
ther complication, however. In experiments, we 
can only observe the relative attenuations in am- 
plitude that are imposed on the input sinusoids. 
To describe this limitation, we say that we mea- 
sure the amplitude spectrum of the system 
transfer function. Therefore, we must find the 
amplitude spectrum of a generalized 2D Gabor 
filter. 

I f  x, and ym are chosen so as to give a displace- 
ment from the center of the elliptic Gaussian, the 
parameter P is naturally interpreted as the relative 
spatial phase angle of the modulation term. Figure 
IA illustrates a sinusoidal plane wave. 

Through the use of Euler’s formula, the modu- 
lation term can be written 

The 2D Gabor filter can now be written as the 
product of an elliptic Gaussian and a sinusoidal 
plane wave (see Fig. 1 C). 

m(X, y> = l/2{ exp[274 Ufl+ Voy - P)] 

+ exp[-2ri( Ufl + Voy - P)] > 

and its 2D Fourier transform is 

M(U, V) = exp(-iP)d(Uo, Vo) + exp(-iP)d(-Uo, -Vo) 

g(4 Y> = K exd- 1 /Wg2/a 2 + ivg2/b2)1 
x cos [-274 u&Y + Voy) - z-q 

This equation gives the real (observable) part of a 
generalized 2D Gabor filter. It is essentially equiv- 
alent to the form given by Daugman (7), except in 
the expression of the decay parameters er: and b, 
which he writes in a form reciprocal to the one 
given here. The scale factor K is included to per- 
mit Gabor filters of any amplitude. This is neces- 
sary so that in the curve fitting procedure de- 
scribed below, a best-fitting Gabor filter could be 
found for data which, although normalized to a 
peak amplitude of 1 .O, were corrupted by noise. 

where d is a delta function (see Fig. 10). 
The 2D Fourier transform of the elliptic Gaus- 

sian term is (see Fig. 1E). 

W( U, V) = exp( Ug2a2 + Vg2b2) 

The convolution of these last two expressions 
gives the complex spectrum 

G(U, V) = exp(-if’) exp[-+&‘a2 + Vg2b2)] 

+ exp(tP) exp[-r(-Ug2a2 - V,‘b’)] 

Of course, the modulation term can be ex- 
pressed in either the Cartesian coordinates U0 and 
V0 as above, or in polar form using the trigono- 
metric relationships 

Fo = ( uo2 + Vo2)” 

e. = arctan ( Vo/ Uo) 

The parameters F0 and 80 are, respectively, the 
spatial frequency of the modulation and its orien- 
tation. 

This expression has six free parameters. Ug and 
Vg both contain two constant translation parame- 
ters U0 and V,,, which specify the locations of the 
Gaussian with respect to the origin and a rotation 
parameter A, which gives the orientation of the 
principal axes. P is the relative spatial phase angle, 
u and b the lengths of the Gaussian principal axes 
in the L\ and l/g directions, respectively. 

The amplitude spectrum is given by the square 
root of the sum of the real and imaginary parts 
squared. Let G+ and G- denote the two origin- 
symmetric elliptic Gaussians parts of the previous 
equation. The complex spectrum may then be 
written as 

Thus the 2D Gabor filter functional form we 
require has nine free parameters. Three of them 
specify coordinate system conversions (the x and 
y  translations and the Gaussian rotation) and can 
be ignored once they have been found. One of 
them (amplitude) specifies a scale factor that must 
be included to allow for noise in the experiment, 
but which can also be safely ignored once found. 
The remaining five “‘essential” parameters (vari- 
ances along the major and minor axes, spatial fre- 

G( U, V) = exp( -I’P)G+ + exp(iP)G- 

= G+[cos (P) - i sin (p>] + G+[cos (P) + i sin (f’)] 

= cos (P)(G+ + G-) + i sin (P)(G- - G,) 

The square of the real part is 

cos2 (P)(G+2 + Gv2 + 2G+G-) 

The square of the imaginary part is 

sin2 (P)(G+2 + Ge2 - 2G+G-) 
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Using the identity cos2 (p) + sin2 (P) = 1, and 
rearranging, we obtain 

G(U, V) = G+2 + Ge2 + 2G+G-[cos2 (P) - sin2 (P)] 

Using the identity cos2 (P) - sin2 (P) = cos (2P) 
and taking the square root, we obtain the 2D 
Cabor filter amplitude spectrum (see Fig. 1 F) 

G( U, V) = K{G+2 + Gw2 + 2G+G-[cos (2P)])” 

which can be expanded using substitutions for G, 
and G-. As before, we include an amplitude term 
to account for the possibility that the data are 
corrupted by noise. Thus the functional form we 
require has seven free parameters, most of which 
are implicit in the above expression. The relative 
spatial phase angle appears in the final expression 
as a constant describing the mixture of the two 
symmetric elliptic Gaussians. This expression is 
independent of the spatial location of the filter, a 
consequence of the shift invariance property of 
Fourier transforms. 

Fitting equations to data 
The evaluation of the 2D Gabor filter hypoth- 

esis described in the results section requires that 
we find a 2D Gabor filter which fits the 2D spatial 
and 2D spectral response profiles of each simple 
cell in our population. The partial differential ex- 
pressions that describe the relationship of the 
error metric (total squared error) to the 2D Gabor 
filter parameter set are nonlinear in several of the 
parameters, so it is impossible to solve the result- 
ing system of equations simultaneously. Instead, 
we chose the simplex algorithm (33) to minimize 
the squared error between the 2D Gabor filter 
functional form and the data. This iterative algo- 
rithm searches the multidimensional parameter 
space for a combination that minimizes the error 
metric. 

We make no effort to describe the simplex algo- 
rithm in detail. An extensive formal treatment 
can be found in Papadimitriou and Steiglitz (34). 
A more readable (but less complete) presentation 
can be found in Caceci and Cacheris (5). This 
algorithm has the desirable properties that it does 
not require taking derivatives, and it is guaranteed 
not to diverge. There are two important points 
one must take into account when using this algo- 
rithm. 

First, one must decide on a termination crite- 
rion. The simplex algorithm manipulates a N + 1 
dimensional polygon in an N-dimensional param- 
eter space; the termination criterion specifies how 
close the vertices must be to one another to de- 
clare that a minimum has been found. We set a 
rather stringent value for proximity. In all cases 
every corresponding parameter value in all ver- 
tices must have been within 0.5% of one another. 
The average value of the vertices was taken as the 
solution. 

Second, one must avoid getting trapped in local 
minima on the error hyperplane. To avoid this 
pitfall, we ran the simplex several (up to 12) times 
on each data set using three different initialization 
strategies. First, we ran each simplex on each sur- 
face starting with a manually selected parameter 
set chosen to be as much like the data surface as 
possible. Second, we ran the simplex five times on 
each surface using standard starting parameter 
sets. Third, we ran the simplex up to six times on 
each surface using the result of the previous run 
displaced by a random vector in the parameter 
space as the input to the new run, thus searching 
the local neighborhood for deeper minima. After 
running the algorithm many times, we listed the 
parameter values, along with the squared error, 
for each run. We always chose the run that re- 
sulted in the least overall squared error for further 
analysis, even though in most cases the results 
from separate runs were very close to one another 
(differences appeared most frequently in the 4th 
significant decimal digit). 

RESULTS 

These results are based on 36 2D spatial 
response profiles obtained from 36 simple 
cells and 36 2D spectral response profiles ob- 
tained from 36 simple cells in the striate cor- 
tices of 14 cats. These two populations do 
not overlap completely: we obtained both 
2D spatial and 2D spectral response profiles 
for 25 cells. These data, and the methods of 
obtaining them, were described in detail in 
the preceding papers (19, 20). 

Predictions 
We use the 2D Gabor filter model to make 

three simple, but comprehensive, predic- 
tions. First, simple cell 2D spatial response 
profiles and 2D Gabor filter spatial profiles 
will be indistinguishable. Second, simple cell 
2D spectral response profiles and 2D Gabor 
filter amplitude spectra will be indistinguish- 
able. Since the 2D Gabor filter model pre- 
supposes linear spatial summation in 2D, we 
also predict that simple receptive fields will 
satisfy this constraint. If these three predic- 
tions are satisfied, we will accept the 2D 
Gabor filter model of simple receptive fields. 

We evaluate all three predictions. First, we 
derive a statistical test by which we can de- 
cide if an individual 2D spatial response pro- 
file has the functional form of a 2D Gabor 
filter and apply the test to the population of 
2D spatial response profiles. Second, we 
compare 2D spectral response profiles to 2D 
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FIG. 2. The two-dimensional (2D) Gabor filter fits simple cell 2D spatial response profiles. Each part of this figure 
illustrates a 2D spatial response profile, the corresponding least-squared error best-fitting 2D Gabor filter, and the 
residual error, that function of space which remains after the 2D Gabor filter has been subtracted from the data. 
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FIG. 2, cont. 
The 2D Gabor filter describes all of the main features of 2D spatial response profiles. A: an odd-symmetric profile in 
which the 2 subregions are slightly staggered. B: a profile close to odd symmetry. C: an asymmetric profile. D and 
F: 2 profiles close to even symmetry, with staggered subregions. E: a Cartesian separable profile. 
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Gabor filter amplitude spectra in a some- 
what less formal environment. Finally, we 
assess the 2D spatial response linearity of the 
population of simple receptive fields by 
comparing the 2D Gabor filter parameter es- 
timates obtained from the space and spatial 
frequency domains. This last effort is neces- 
sary despite prior demonstrations that simple 
cells linearly combine inputs distributed 
across their width axes (2, 3 1), since linearity 
of spatial summation in 2D does not auto- 
matically follow. 

20 spatial response projles 
and 20 GaborJilters 

To determine if simple cell 2D spatial re- 
sponse profiles have the functional form of 
2D Gabor filters we assume that the observed 
profiles r(x, y) consist of a 2D Gabor filter 
g(x, y), some other deterministic function of 
2D space h(x, y), and additive Gaussian 
noise of zero mean and some computable 
variance co2 

r(x, Yl = g(x, Y> + w, Y) + e - N(OPo2) 

then 

r(x, Y) - g(x, Y) = h(& Y) + e - N(bo2) 

We call the expression on the left the resid- 
ual error: that function of space in the ob- 
served response which cannot be described 
by the 2D Gabor filter. If h(x, y) = 0, we can 
expect 

T(x, Y) - g(x, Y) = e - N(%%2) 

That is, the difference between the ob- 
served 2D spatial response profile and some 
yet to be determined 2D Gabor filter is nor- 
mally distributed with zero mean and some 
given variance. If it is not, we can reject the 
2D Gabor filter model. This leads to formu- 
lable hypotheses 

Ho: q2 s Q2 

Hi: q2 > co2 

where aI2 is the variance of the residual error, 
and Q* is the variance of the noise. That is, if 
the 2D Gabor filter does not account for all 

the variation in the data except that due to 
random error, we must conclude that h(x, 
v) # 0, and there is some systematic devia- 
tion in the observed 2D spatial response pro- 
files from the template laid down by the 2D 
Gabor filter functional form. To implement 
this test we must find the expected variance 
of the noise, find a 2D Gabor filter that has a 
fair chance of describing the data, compute 
the variance of the residual error, and com- 
pare this variance to the variance of the 
noise. 

To find the expected variance of the noise, 
we computed 39 1 reverse correlations begin- 
ning with temporal intervals of 19 stimulus 
durations (typically 950 ms) and working to- 
ward longer intervals. This computation 
provided 100,096 samples of noise (256 from 
each temporal interval) from each experi- 
ment. Because receptive fields are found 
within a narrow temporal interval close to 
the time spikes occurred (19), these samples 
are devoid of any signal; they represent the 
expected behavior of the experiment in the 
absence of a receptive field. The surface that 
results is devoid of structure and was charac- 
terized statistically by producing a histogram 
(as the solid lines in Fig. 3) showing the num- 
ber of occurrences of each noise value in the 
surface. The variance of this amplitude dis- 
tribution was taken as the variance of the 
noise. 

We used the simplex algorithm to find the 
2D Gabor filter that best fit the 2D spatial 
response profiles in the least-squared error 
sense. The residual error is simply the point- 
for-point difference between the data and the 
fit over the grid surface on which stimuli 
were presented. Figure 2 illustrates six 2D 
spatial response profiles, the corresponding 
2D Gabor filters, and the residual error in 
each case. In each example, the 2D Gabor 
filter describes the profile well. 

All of the observed variability in 2D spatial 
response profiles described qualitatively in 
the first paper of this series can be described 
quantitatively using the parameters of the 

FIG. 3. Amplitude histograms for raw data, error, and noise. Each part of this figure (A-F) corresponds to A-F of 
Fig. 2. On the left, an amplitude histogram for the raw data is shown (the incidence of response values over the 256 
points in the difference correlograms). The amplitude histogram on the right was computed after the best-fitting 
Gabor function was subtracted from the correlogram (the residual error). On both the left and right, the amplitude 
distribution of the noise (computed by repeating the reverse correlation well outside the temporal window in which 
the cell responds) is presented as a smooth curve for comparison. The variance of the residual error distribution 
(unlike the data) is not significantly different from the variance of the noise. 
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FIG. 4. Only 3 two-dimensional (2D) spatial response profiles of the 36 examined were significantly different from 
2D Gabor filters. Each of the residual error surfaces contained some systematic structure. 
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2D Gabor filter. Figure 2, A and B, illustrates 
profiles in odd symmetry and near odd sym- 
metry, respectively; Fig. 2C illustrates a pro- 
file that is quite asymmetric. Figure 2E illus- 
trates a Cartesian separable profile; Fig. 2, D 
and F, illustrates profiles that are not Carte- 
sian separable. 

The residual error surfaces in Fig. 2 dem- 
onstrate that most of the variation in the data 
is accounted for by a 2D Gabor filter. The 
residual variation appears small and spatially 
unstructured. In 33 of the 36 2D spatial re- 
sponse profiles we collected, 2D autocorrela- 
tion functions of the residual 
no systematic 2D structure. 

error revealed 

We may now compare the variance of the 
residual error with the variance of the noise. 
Figure 3 illustrates amplitude histograms of 
the same data illustrated in Fig. 2. The solid 
curves in each part represent the distribu- 
tion of amplitudes expected in the absence of 
a receptive field (see METHODS). The solid 
histograms in the column labeled ERROR 
represent the distribution of amplitudes 
found in the residual error surfaces. In each 
case, it is apparent that the error histogram is 
reasonably well contained within the noise 
histogram. 

For comparison, Fig. 3 also illustrates am- 
plitude distributions taken from the original 
data (in the column labeled DATA). These 
histograms are quite obviously not contained 
by the noise histograms, which allows us to 
make the trivial conclusion that there was a 
signal in the data. Because the error histo- 
grams were contained, we make a more sig- 
nificant conclusion: all of the variation in the 
original data except that due to random error 
can be described by a 2D Gabor filter. 

The statistic 
z = [2xn2]” - [2(n - 1)3” 

was derived from thefdistribution which be- 
comes chi-square (x,*) when the degrees of 
freedom (n) in the denominator is large (be- 
cause we have so many data points). It is 
distributed according to the standard normal 
distribution ( 15, 29). We computed 2 for 
each residual error histogram in our popula- 
tion. The decision criterion was that for 2 3 
1.65 we would reject the null hypothesis 
(P < 0.10). 

In 33 out of the 36 cells the statistic 2 
failed to reach significance. Thus in these 
cases we do not have enough evidence to re- 

ject the 2D Gabor filter hypothesis, so we 
must accept it. We note that with a probabil- 
ity of P < 0.1 there is ample opportunity to 
reject the hypothesis. Indeed, out of 36 cases 
we would expect 3.6 cases to be rejected by 
this test, even if the null hypothesis were 
always true. Because we only reject 3 of the 
36 cases, we are within the bounds estab- 
lished by our expectations. 

The three cases that did not pass the statis- 
tical test are illustrated in Fig. 4. These 2D 
spatial response profiles have in common 
that a subregion is more or less sharply 
peaked than we expect from the 2D Gabor 
filter model. This shows up as periodic struc- 
ture in the residual error, and many signifi- 
cant nonzero elements in its 2D autocorrela- 
tion function (not illustrated). We can offer 
no explanation as to why the 2D Gabor filter 
does not fit these data. 

20 spectral response pro$les 
and 20 Gaborjilters 

We turn now to the second prediction, 
that simple cell 2D spectral response profiles 
will be indistinguishable from 2D Gabor 
filter amplitude spectra. Ideally, one would 
like to employ a statistical decision criterion 
to each profile, but two factors prevent it. 
First, because simple cell response variability 
increases with response amplitude (8, 36, 
37), it is impossible to assign a single ex- 
pected error distribution to the entire data 
set. Second, the data were not collected with 
uniform sampling intervals, which impedes 
the calculation of a 2D autocorrelation func- 
tion. Overcoming these two obstacles would 
have required rebuilding much of the labora- 
tory, so we settled for a partial analysis. The 
simplex algorithm was used to find the 2D 
Gabor filter amplitude spectrum that best fit 
the data in the least-squared error sense, the 
residual error was calculated, and the quality 
of fit was evaluated by eye through an exami- 
nation of the residual error surfaces. 

Figure 5 illustrates six examples of 2D 
spectral response profiles, the corresponding 
best-fitting 2D Gabor filter amplitude spec- 
tra, and the residual error. In each example, 
the 2D Gabor filter fits the data remarkably 
well. All of the features of the 2D spectral 
response profiles itemized in the previous 
paper are accounted for by 2D Gabor filters, 
including nonradial elongation (20). 

In the residual error surfaces, one can see 
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0 0.29 0.58 cpd 

FIG. 5. The two-dimensional (2D) Gabor filter fits simple cell 2D spectral response profiles. Each part of this 
figure illustrates a 2D spectral response profile, the corresponding least-squared error best-fitting 2D Gabor filter 
amplitude spectrum, and the residual error. The 2D Gabor filter accommodates all of the main features of 2D 
spectral response profiles. A: a circularly symmetric profile. B and C radially elongated profiles. D-l? nonra- 
dially elongated profiles. The nonradial elongation in D can best be detected in the fitted function. 

in each case that most of the variability in the ment. Here, the amplitudes of the residual 
data is accounted for by the 2D Gabor filter. errors are small near the edges of the grids 
The variation that remains is unlike the re- (where there is no response) and increase as 
sidual variation in the space domain experi- one moves toward the centers of the grids 
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FIG. 5. (continued) 

(close to the largest response). There is, how- 
ever, no tendency for the residual errors to be 
preferentially above or below zero. 

Because we had no objective criterion for 
determining if the 2D Gabor filter fit the 
data, we scrutinized all of the residual error 
surfaces for evidence of systematic devia- 
tions. Figure 6 illustrates the two profiles 
which, in our opinions, deviated from the 
best-fitting 2D Gabor filter. The profile illus- 
trated in Fig. 6A contained a skew that was 
unaccounted for; the data surface leans 

slightly toward low spatial frequencies, 
whereas the fitted 2D Gabor filter is radially 
symmetric about its peak. As a consequence, 
there is a radial ripple in the residual error 
surface. The data in Fig. 6B had nonelliptical 
isoresponse-amplitude contours. Conse- 
quently, there are two lateral peaks and a 
central trough in the residual error surface. 

The two profiles in Fig. 6 were the only 
two examples of systematic deviation we 
could find in the population of 36. There- 
fore, we conclude that the 2D Gabor filter 
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FIG. 6. Careful examination of the residual error surfaces revealed that only 2 spectral response profiles out of 36 
were not well described by two-dimensional (2D) Gabor filters. A: the residual error surface exhibits some radial 
ripple; the data were skewed slightly more than the 2D Gabor filter. B: the residual error surfaces exhibits a cluster of 
4 extrema; isoresponse-amplitude contours around the data were not quite elliptical. 

provides an excellent model of simple cell 
2D spectral response profiles. 

Response linearity 
In the results presented above, the 2D 

Gabor filter was demonstrated to accurately 
describe both the 2D spatial response profiles 
and the 2D spectral response profiles of sim- 
ple cells. These demonstrations were sepa- 
rate, however, and no attempt was made to 
determine if the filter that described the 
space domain data was the same as the filter 
that described the frequency domain data. If 
a simple receptive field exhibits response lin- 
earity over two spatial dimensions, and if 2D 
Gabor filters accurately describe its re- 
sponses in both the space domain and the 
spatial frequency domain, then the space do- 
main Gabor filter and the frequency domain 
Gabor filter must be Fourier transform pairs 
(they are the same filter). 

This leads to a simple evaluation of 2D 
spatial response linearity: if the 2D Gabor 

filter describing the space domain data and 
the 2D Gabor filter describing the frequency 
domain data have the same parameters, then 
the receptive field combines spatially distrib- 
uted inputs linearly. 

We compared the parameter sets for all the 
profile pairs in our sample and found that in 
no cases were all of the parameters identical. 
In fact, it was rare for even a single pair of 
parameters from the space and spatial fre- 
quency domains to be the same beyond two 
decimal digits. This result is unsurprising, 
though, for several reasons. First, the mea- 
surements represent an estimate of the true 
response profile in either domain. Second, 
fitting parameters to the data represents an- 
other level of estimation. In the discussion 
that follows, it is worthwhile to remember 
that we are comparing estimates of estimates. 

Although we know the parameters of the 
best-fitting 2D Gabor filters in both domains 
for 25 cells, we cannot implement a simple 
test on any of them in any meaningful way, 
since it was not possible to generate confi- 
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TABLE 1. 20 Gaborjilter parameter estimates obtained from space 
and spatial frequency domains for 25 cells 
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Space Domain Estimates Frequency Domain Estimates 

Relative Relative 
Wavevector Wavevector Effective Effective orien- Relative Wavevector Wavevector Effective Effective orien- Relative 
frequency, orientation, width, length, tation, phase, frequency, orientation, width, length, tation, phase, 

Cell cycles/deg de deg deg deg de cycles/deg de deg deg deg deg 

0608 0.39 22 1.29 1.67 4 90 0.5 1 22 0.35 0.31 2 69 
0309 0.49 166 1.11 2.22 8 11 0.81 166 0.74 0.45 8 85 
0409 0.47 167 1.26 1.54 -22 6 0.71 167 0.50 0.44 -13 2 
0809 0.5 1 113 1.01 1.60 -8 51 0.79 113 0.64 0.54 -11 64 
0909 0.28 13 2.16 2.54 26 44 0.35 13 0.48 0.35 41 54 
0511 0.63 132 1.23 2.28 -1 7 0.68 129 0.79 0.49 -7 0 
0611 0.53 144 0.84 0.90 -4 11 0.74 131 0.85 0.78 -23 61 
0711 0.47 137 0.95 1.31 -29 86 0.54 131 0.52 0.34 -43 71 
0811 0.70 98 0.86 2.07 5 37 0.83 96 0.68 0.21 1 50 
1311 0.42 79 1.32 3.32 11 38 0.35 76 0.44 0.15 3 90 
0212 0.30 67 2.26 3.69 4 46 0.35 70 0.50 0.24 1 72 
0612 0.29 133 2.30 3.66 -6 81 0.31 131 0.47 0.25 -11 0 
0414 0.06 21 2.04 4.47 3 80 0.28 28 0.31 0.16 0 82 
0914 0.39 58 0.84 1.60 -2 29 0.59 62 0.64 0.36 -6 45 
1014 0.2 1 124 0.80 3.39 -9 2 0.32 118 1.25 0.29 -1 75 
0415 0.56 104 1.03 1.87 6 81 0.80 104 0.60 0.32 3 90 
0116 0.19 95 3.70 5.75 27 41 0.19 115 0.24 0.14 6 90 
0316 0.20 108 0.94 2.27 -3 33 0.25 103 1.12 0.40 -2 90 
0218 0.29 105 1.63 2.31 -3 47 0.38 103 0.59 0.34 -2 90 
0219 0.66 50 0.76 1.34 -41 31 0.77 47 1.20 0.8 1 -22 77 
0319 0.05 169 2.7 1 3.71 -11 54 0.24 168 0.34 0.30 -34 84 
0619 0.20 175 2.49 3.05 26 4 0.14 161 0.38 0.27 38 13 
0719 0.28 126 1.87 4.00 -10 70 0.30 121 0.49 0.23 -21 24 
0122 0.17 33 3.56 5.39 -28 6 0.16 35 0.20 0.13 -27 38 
0224 0.14 98 1.60 3.30 -8 67 0.20 102 0.28 0.16 -11 90 

The plane-wave parameters are given in terms of spatial frequency (cycles per degree of visual angle) and orientation (degrees counterclockwise from 
horizontal). The elliptic Gaussian parameters are given as effective width (degrees of visual angle), and effective length (degrees of visual angle). See text for 
definitions. The relationship of the plane wave and the elliptic Gaussian is described by the relative orientation (degrees counterclockwise from parallel) and 
relative phase (absolute value in degrees relative to cosine phase). 

dence intervals around each estimated pa- 
rameter. Hence, we cannot compare individ- 
ual space domain fits to individual frequency 
domain fits. Instead, we evaluate the re- 
sponse linearity of the population as a whole. 
If each simple cell is a linear filter in 2D of 
space, then the behavior of the whole popula- 
tion should follow suit. 

We constructed scatter diagrams and 
computed correlation coefficients using pa- 
rameter estimates for 2D Gabor filters from 
both 2D domains for the whole population 
of cells (see Table 1). These scatter diagrams 
were arranged so that the distribution of 
space domain parameters lies along the hori- 
zontal axis, and the distribution of frequency 
domain parameters lies along the vertical 
axis. Solid lines in each graph represent theo- 
retical predictions. If all simple cells were 2D 
Gabor filters, if all parameter estimates were 
perfect, and if all simple cells responded lin- 
early, then all of the symbols in each scatter 

diagram would lie precisely along the solid 
lines. 

Spatial frequency and orientation 
Figure 7 illustrates the estimated modula- 

tion parameters spatial frequency and orien- 
tation. Parameter estimates made from the 
space domain data are distributed along the 
abcissa; those made from the frequency do- 
main data along the ordinate. Estimates of 
plane wave orientation (Fig. 7B) made from 
the two domains agree very well: the correla- 
tion coefficient is 0.99, and all of the points 
in the scatter diagram lie very close to the 
diagonal line of unit slope and zero intercept. 

Estimates of plane wave spatial frequency 
agree less well. They are strongly correlated 
(r = 0.9 l), but most of the symbols in Fig. 7A 
lie above the diagonal line. Plane wave spa- 
tial frequency is slightly underestimated 
using space domain data, or slightly overesti- 
mated using frequency domain data, or both. 
We interpret this shift as a systematic bias of 
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FIG. 7. Parameters of the two-dimensional (2D) Gabor filter plane wave as estimated from 2D spatial and spectral 
response profiles. A: spatial frequency estimates should be identical (diagonal Zinc). There is a strong linear 
relationship (Y = 0.9 1), but most of the points lie above the diagonal Iine. This error is probably due to a systematic 
bias of unknown origin in the estimation procedure. B: plane-wave orientation estimates should be identical. For all 
practical purposes, they are (Y = 0.99). 

unknown origin in the estimation proce- Relative orientation and relative 
dures. The average absolute value of the spatialphase 
difference between the two estimates is The relationships between the plane wave 
0.11 cpd. and the elliptic Gaussian terms of the 2D 

7 

o" 
Relative orientation 

-c-45" 
Relative phase 

+90° 

FIG. 8. The relationships between the two-dimensional (2D) Gabor filter plane wave and elliptic Gaussian as 
estimated from 2D spatial and spectral response profiles. A: estimates of relative orientation should be identical 
(solid diagonal line). There is reasonably good correlation between the 2 estimates (Y = 0.84) and a strong tendency 
for alignment of the modulation and a principal axis. B: estimates of relative spatial phase should be identical, but 
there is almost no correlation between the 2 estimates (Y = 0.27). Furthermore, the frequency domain estimates tend 
toward sine phase, whereas the space domain estimates have no central tendency. 
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FIG. 9. ‘The shape (aspect ratio) of the two-dimen- 
sional (2D) Gabor filter elliptic Gaussian term as esti- 
mated from 2D spatial and spectral response profiles 
should be identical (solid diugonal line). There is rea- 
sonably good correlation between the 2 estimates (Y = 
CM%), and the points have no tendency to lie above or 
below the diagonal linu. The shapes of 2D spatial and 
spectral response profiles are therefore roughly the same. 

Gabor filter are captured by two parameters: 
relative orientation and relative spatial 
phase. The estimated differences in orienta- 
tion between the plane wave and the space 
domain elliptic Gaussian minor axis (ab- 
cissa) and the plane wave and the frequency 
domain elliptic Gaussian major axis (ordi- 
nate) are illustrated in Fig. 8A. There is rea- 
sonably close agreement between the two es- 
timates (y = 0.84). In particular we note a 
strong tendency for the relative orientation 
of the two terms to be zero. In about half 
(1 l/25) of the profiles, the plane wave was 
oriented within & 10” of the appropriate 
principal axis. For the remainder of the pro- 
files, both the space domain and the fre- 
quency domain data yielded an estimated 
relative orientation > 1 O”. 

This result provides the quantitative con- 
nection between the subregion staggering 
observed in 2D spatial response profiles (19) 
and the nonradial elongation observed in 2D 
spectral response profiles (20). Figures 2F 
and 5F illustrate 2D spatial and spectral re- 
sponse profiles obtained from the same cell. 
In the 2D spatial response profile (Fig. 2.F) 

the subregions are staggered with respect to 
one another along their long axes; the 2D 
spectral response profiles (Fig. 5F) exhibits 
nonradial elongation. The best-fitting 2D 
Gabor filter profiles estimate a relative orien- 
tation of -27” in both the space domain and 
the spatial frequency domain. (Most of the 
estimate pairs do not agree this well, particu- 
larly for large values of relative orientation.) 

The relative spatial phase between the 
plane wave and the elliptic Gaussian is illus- 
trated in Fig. 8B. I’he agreement between the 
space and frequency domain estimates is 
particularly poor. The correlation coefficient 
is only 0.27 (the sign, at least, is correct), 19 
of the 25 points lie above the diagonal line, 
and 6 lie along the top edge of the graph. 
Thus the frequency domain estimate typi- 
cally lies closer to sine phase (+90°) than the 
space domain estimate. I’his lack of correla- 
tion arises primarily from the insensitivity of 
our frequency domain methods to spatial 
phase (see DISCUSSION). 

Shape and size of elliptic Gaussian 
According to the 2D Gabor filter model, 

the shapes of the fitted elliptic Gaussians in 
the two domains should be identical, and 
their sizes should be reciprocal. 

The shape of the elliptic Gaussian was de- 
termined by taking the ratio of the minor 
axis to the major axis, giving a dimensionless 
number in the range O-l (the aspect ratio). 
Figure 9 illustrates the elliptic aspect ratios as 
estimated from the space and frequency do- 
main data. There is a reasonably strong cor- 
relation between the two estimates (r = 0.86), 
and the points show no preference for distri- 
bution above or below the diagonal line. 
There is a tendency for the points to cluster 
about a value of 0.6; 2D spatial response 
profiles tend to be nearly twice as long as 
they are wide, and 2D spectral response pro- 
files twice as wide as they are long. There is 
no absolutely preferred aspect ratio; the ob- 
served values are in the range 0.23 (nearly 5 
to 1 elongation) to 0.92 (nearly round). We 
conclude that the observed shapes of the el- 
liptic Gaussian in the two domains is the 
same, as expected. 

The effective length, width, and size of the 
elliptic Gaussian can be defined using the 
lengths of the principal axes. If we let a, and 
h, denote the lengths of the minor and major 
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FIG. 10. The sizes (lengths of the major and minor axes) of the two-dimensional (2D) Gabor filter elliptic 
Gaussian term as estimated from 2D spatial and spectral response profiles should be inverses (solid hyperbolas). A: 
estimates of the space domain minor axis and the frequency domain major axis frequently follow this rule (many 
points lie on or near the hyperbola), but some do not (the points lie inside the hyperbola). B: similar results are 
obtained for the relationship between the space domain major axis and the frequency domain minor axis. C and D: 
estimates of the decay parameters a and b should be identical (solid diagonaZ lines). Many of the points lie on or near 
the diagonaZ lines, but some lie below. The correlation coefficients are 0.80 for C and 0.8 1 for D. 

axes of the elliptic Gaussian in the space do- 
main, and af and bf denote the lengths of the 
major and minor axes in the frequency do- 
main, then the 2D Gabor filter model pre- 
dicts 

effective width: 7?a, = l/r”af 

effective length: 7?b, = l/~“‘bf 

Consequently, 
effective area: ra,b, = l/?ra&f 

the length of its minor axis times the square 
root of K (root r), the effective length as root 
x times the length of the major axis, and the 
effective area as x times the lengths of the 
major and minor axes. The width is typically 
measured in a direction nearly parallel to the 
receptive field modulation axis, and the 
length in a direction perpendicular to the 
width. Similar definitions are adopted for the 
spatial frequency domain, where the width is 
typically measured in a nearly radial direc- 

We may thus define the effective width of tion and the length in a direction perpendic- 
the elliptic Gaussian in the space domain as ular to the width. 
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FIG. 11. The effective areas of the two-dimensional (2D) Gabor filter elliptic Gaussian terms as estimated from 
2D spatial and spectral response profiles should be inverses. A: indeed, many of the points lie on or near the 
predicted solid hyperbola. B: a magnified view of the lower left portion ofA reveals that many of the points lie inside 
the hyperbola. Because the hyperbola represents the best possible performance by any linear filter, this result indicates 
that some simple receptive fields have a spatial nonlinearity. 

The estimates of effective width and the 
effective length made using 2D spatial and 
spectral response profiles are illustrated in 
Fig. 10. The solid line in each part traces the 
predictions made by the 2D Gabor filter 
model. About one-half of the estimates of 
effective width lie close to the predicted hy- 
perbolas (Fig. lOA); the remainder lie inside. 
Similar results were obtained for estimated 
effective length (Fig. 1OB). If the reciprocal of 
the space domain effective widths and 
lengths are computed, the expectation con- 
verts to identity. The results of these calcula- 
tions are illustrated in Fig. 10, C and D. Rea- 
sonably close agreement was obtained for 
both effective width (r = 0.80) and effective 
length (r = 0.8 1): many of the points lie on or 
near the predicted diagonal lines, but in both 
cases, some of the points lie below. 

Estimates of effective area behave simi- 
larly (Fig. 11A). Three-fifths (M/25) of the 
points follow the predicted hyperbola rea- 
sonably well. Figure 11 B provides a closer 
look at the region of Fig. 11A near the origin. 
In this illustration it can be seen that 10 of 
the points lie well inside (to the left) of the 
predicted hyperbola. 

The results thus far demonstrate that all of 
the expected relationships except relative 

spatial phase are reasonably well satisfied by 
50-60% of the simple cells in our sample. 
These cells satisfy the constraint of linear 2D 
spatial summation, and the 2D Gabor filter 
is an excellent model of their 2D spatial and 
spectral response profiles. 

The remaining cells show a characteristic 
deviation from the model; the observed ef- 
fective lengths, widths, and areas are smaller 
in one domain than one would expect given 
the observations made in the reciprocal do- 
main. We therefore compared the extent to 
which these observations deviate from the 
predictions in the length and width direc- 
tions. We may define the joint occupied 
length and width as the product of the effec- 
tive occupied lengths and widths, in which 
case the 2D Gabor filter model predicts 

joint occupied width: rasaf = 1 

joint occupied length: ?rb,bf = 1 

Figure 12 illustrates a comparison of the 
observed joint occupied lengths and widths. 
The 2D Gabor filter model predicts that both 
of these quantities should equal one and that 
all of the points should lie on the asterisk. 
The diagonal line in this case represents the 
prediction of a simple hypothesis; deviation 
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FIG. 12. Any mechanism invoked to explain the ob- 
served deviation from the predictions of the two-dimen- 
sional (2D) Gabor filter model must operate in 2 spatial 
dimensions. This figure compares the degree of devia- 
tion along the width and length axes of the receptive 
fields. The 2D Gabor filter model predicts that the joint 
occupied widths and lengths both equal unity (marked 
by an asterisk). Those receptive fields exhibiting devia- 
tions from this prediction do so to an equivalent degree 
in both dimensions (diagonal line). The correlation be- 
tween the observed deviations is 0.8 1. 

from the model is the same in both the length 
and width directions. The observations are 
distributed about the diagonal line, and there 
is reasonably good correlation (7 = 0.8 1). 
‘Thus any mechanism invoked to explain the 
deviations from the 2D Gabor filter model 
must operate in two spatial dimensions equi- 
valently. 

In summary, 2D spatial response profiles 
can be fully described as 2D Gabor filters. 
Statistical evaluation of the residual error re- 
veals that the differences between 2D spatial 
response profiles and 2D Gabor filters are 
indistinguishable from random error. Simi- 
larly, 2D spectral response profiles can be 
fully described as 2D Gabor filters. No statis- 
tical evaluation of the residual error was per- 
formed, but very few 2D spectral response 
profiles exhibited visible deviations from 2D 
Gabor filter amplitude spectra. In general, 
the spatial and spectral parameters of the fit- 
ted 2D Gabor filters are in agreement, in 
support of the hypothesis of 2D linear spatial 
summation. In particular, modulation spa- 
tial frequency and orientation, elliptic Gaus- 

sian size and shape, and relative orientation 
are largely in agreement. There are two nota- 
ble exceptions Estimates of relative spatial 
phase are largely uncorrelated. Estimates of 
elliptic Gaussian size do not agree in some 
cases. 

DISCUSSION 

In virtually every case, a 2D Gabor filter 
could be found that accurately described the 
simple cell 2D spatial and spectral response 
profiles in our small population. In the space 
domain, the differences between the data 
and the fits were statistically indistinguish- 
able from random error in most cases; in the 
frequency domain, there was no visible sys- 
tematic structure in the residual error sur- 
faces in most cases. All variations in the 2D 
spatial and spectral response profiles de- 
scribed in the preceding papers (19, 20) were 
easily captured by the general expressions for 
the 2D Gabor filter, including noncanonical 
spatial phase angles and Cartesian separable 
and nonseparable response profiles. In gen- 
eral, these results provide convincing empiri- 
cal support for Marcelja’s original hypothesis 
(26) and Daugman’s extension of it to two 
spatial dimensions (7). 

The 2D Gabor filter has many free param- 
eters and is a remarkably flexible functional 
form. Degenerate decompositions include 
impulsive receptive fields (as the elliptic 
Gaussian vanishes) and pure sinusoids (as 
the elliptic Gaussian becomes infinite) 
among others. However, this filter cannot fit 
everything; the circularly symmetric differ- 
ence of Gaussian’s structure characteristic of 
retinal ganglion cell receptive fields (35) is an 
obvious example. There are many other con- 
ceivable forms a receptive field might assume 
that a 2D Gabor filter model cannot support: 
aperiodic zero crossings, curved or nonparal- 
lel subregions, and central subregions with 
lower amplitude than flanking subregions. 
We have observed neither receptive fields 
with these characteristics nor any receptive 
field having a form not reasonably well 
matched by 2D Gabor filters. 

In the course of this work, we have en- 
countered several unanticipated degrees of 
freedom in the spatial organization of simple 
receptive fields. Simple receptive fields are 
found in many relative spatial phase angles, 
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rather than in just sine and cosine phase, The 
2D spatial response profiles frequently ex- 
hibit staggered subregions, and the 2D spec- 
tral response profiles frequently exhibit 
nonradial elongation. The general expression 
for the 2D Gabor filter accommodates these 
observations in a natural way, as translations 
and rotations of the spatial modulation term 
with respect to the Gaussian envelope. 

Previously, we (32) and others (2 1, 22, 3 1) 
have observed simple receptive fields in cat 
striate cortex composed of many (up to six) 
spatially discrete, periodic subregions. Al- 
though we did not observe any “periodic” 
simple cells in the present study, we antici- 
pate that the 2D Gabor filter will describe 
these receptive fields equally well. 

The 2D Gabor filter’s inherent flexibility 
may confer decided advantages on the sys- 
tem that employs it. Because its parameters 
are continuously variable, one imagines that 
the system can be fine-tuned according to the 
environment in which the organism finds 
itself, either through early visual experi- 
ence (18) or by continual reconfiguration 
throughout the animal’s lifetime ( 14). Simple 
receptive-field spatial structure can be com- 
pletely specified with eight numbers, and this 
may lead to a representational economy in 
the system responsible for its specification. 
Further economy might be obtained by es- 
tablishing a small set of repetitive rules that 
generate sets receptive field parameters in a 
neighborhood (a multidimensional loop). 

There are an infinite number of 2D Gabor 
filters, but clearly only some of them can be 
expressed in cat striate cortex. Which ones 
are represented is a question that can be ad- 
dressed with a large scale, systematic appli- 
cation of the methods described in these 
papers. A question of somewhat greater con- 
ceptual consequence is why is any particular 
subset of 2D Gabor filters is chosen. 

Using Daugman’s generalization (7) of 
Gabor’s concepts (16), we may think of sim- 
ple receptive fields as occupying hypervol- 
umes in a four-dimensional information 
space, the coordinates of which specify spa- 
tial position in 2D and spatial frequency po- 
sition in 2D. The receptive fields we observe 
are projections from this space onto the two 
familiar 2D spaces. Figure 13 illustrates l/e 
isoamplitude contour around the elliptic 
Gaussian terms of the fitted 2D Gabor filters 

from subsets of our population in both the 
2D space domain and the 2D spatial fre- 
quency domain. Figure 13, A and B, illus- 
trates the placements of the space domain 
elliptic Gaussian in the visual field according 
to the eccentricities determined at the time of 
the experiments. Figure 13, C and D, illus- 
trates placements in the 2D spatial frequency 
domain determined by 2D spectral response 
profiles. 

At any given retinal eccentricity (Fig. 13, A 
and B), there is considerable variation in the 
sizes, orientations, and aspect ratios of the 
Gaussians. Similarly, at any given location in 
the spatial frequency domain (Fig. 13, C and 
D) there is similar variability. The known 
correlations of receptive-field size with reti- 
nal eccentricity and spectral eccentricity are 
reflected in these projections, even in this 
small population of cells. There does not ap- 
pear to be a single sampling strategy (23) for 
information in the 4D space. To determine 
what the strategies actually are, a much 
larger sample of profiles are required. 

20 spatial response linearity 
The 2D Gabor filter hypothesis rests 

firmly on the assumption of 2D spatial re- 
sponse linearity, but our evaluation of this 
conjecture produced mixed results. Our ap- 
proach to the issue of spatial response linear- 
ity differs somewhat from that of prior stud- 
ies (2, 3 1 ), where 1 D spatial response profiles 
and spatial frequency tuning curves were 
compared using the Fourier transform. This 
approach has both advantages and disadvan- 
tages. To its credit, it is simple to apply and 
makes no assumptions about the functional 
form of the response profiles in either do- 
main. To its debit, it is difficult to make a 
quantitative assessment of the two curve’s 
similarity, since a point-by-point compari- 
son requires either that the data be taken at 
precisely reciprocal sampling intervals or 
that interpolation be used to obtain interme- 
diate points not on the sampling net. 

These problems are compounded when 
working in 2D. For a direct comparison of 
the two 2D response profiles via the Fourier 
transform, we would have had to sample on 
precisely reciprocal Cartesian grids at identi- 
cal orientations. Indeed, this was our original 
intention and provided the motivation for 
the “near Cartesian” sampling grids used in 
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FIG. 13. Spatial and spectral response profiles can be thought of as projections from a four-dimensional informa- 
tion space onto the 2 familiar 2D spaces. A and B: 2D Gabor filter footprints ( 1 /e isoamplitude contours around the 
elliptic Gaussian) in the 2D space domain. C and D: footprints in the 2D spatial frequency domain. 

the second paper of this series (20). In prac- 
tice, however, it proved impossible to gener- 
ate perfectly Cartesian sampling grids at ar- 
bitrary orientations in the 2D spatial fre- 
quency domain. The resulting distortion of 
the sampling grids prevented direct compari- 
son of 2D spatial and spectral response pro- 
files using the 2D Fourier transform. Fur- 
thermore, even if we had solved or avoided 
these problems, it is not obvious that mean- 
ingful quantitative comparisons could have 
been made. Instead, we abandoned the direct 
Fourier transform approach in favor of the 
present method. 

Our approach is based on the same princi- 
ple as prior studies (the Fourier transform) 
and relies on independent measurements in 
the 2D space and spatial frequency domains 
Receptive-field structure was determined by 

finding the best fitting 2D Gabor filters and 
thus our method suffers from dependence on 
a specific functional form. The advantages 
are that once we have obtained the fit, we are 
left with fewer numbers to compare (the 
filter parameters), the comparison can be 
made across the entire population using a 
correlation analysis, and deviations from lin- 
earity can be parsed according to the effect 
each filter parameter has on receptive-field 
structure. Because the 2D Gabor filter model 
describes the data so well, the advantages of 
the present approach appear to outweigh the 
disadvantages. 

The comparison of parameters obtained in 
this way show that most simple cells perform 
approximately linear 2D spatial summation. 
As an example, consider Fig. 14. The top row 
of Fig. 14 illustrates the 2D spatial response 
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profile and the 2D spectral response profile both longer and wider than the original. The 
obtained from a single simple cell. A 2D predicted frequency domain profile is 
Gabor filter describes each of these profiles slightly larger than the original in all direc- 
well (see Figs. 2B and 3B). We have used the tions, and the peak is shifted toward a slightly 
parameter estimates from the space domain lower spatial frequency. However, compari- 
fit to predict the spectral response profile, son of the predicted and original response 
and the parameter estimates of the frequency profiles is quite good. 
domain fit to predict the spatial response In those cases where this reciprocal predic- 
profile, illustrated in the middle row. Not all tability was observed, 2D spatial response 
of the parameters were used: we allowed the linearity obtains. Relative response ampli- 
predicted spatial profile to reside in the same tudes to small rectangular stimuli distributed 
position as the original (shift invariance), and over 2D of space can predict relative re- 
we allowed the two predicted profiles to re- sponse amplitudes to drifting sinusoidal grat- 
tain the same relative phase as the original ings of arbitrary spatial frequency and orien- 
estimates. tation. Relative response amplitudes to drift- 

The bottom row of Fig. 14 illustrates the ing sinusoidal gratings distributed over the 
residual error of the two predictions, which is 2D spatial frequency domain can predict rel- 
everywhere small in both cases, but contains ative response amplitudes to small rectangu- 
features typical of the errors we have ob- lar stimuli of arbitrary spatial position (al- 
served. The predicted space domain profile is though a spatial phase angle must be as- 
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FIG. 14. In many cases, simple cell two-dimensional (2D) spatial and spectral response profiles are Fourier 
transform pairs, indistinguishable from 2D Gabor filters. Top TOW: the observed response profiles of a single cell. 
Middle TOW: the 2D spatial response profile predicted by the frequency domain data, and the 2D spectral response 
profile predicted by the space domain data, using the fitted 2D Gabor filters as intermediate steps in both cases. 
Bottom row: the error. 
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sumed). Presumably, either the 2D spatial or 
spectral response profile may be used to pre- 
dict responses to stimuli of arbitrary com- 
plexity. 

In those cases where the space domain and 
spatial frequency domain filter parameters 
do not agree, 2D spatial response linearity 
does not obtain. The largest observed devia- 
tions were in the sizes of the elliptic Gaussian 
(they were smaller than one would expect), 
and in the estimates of relative spatial phase. 
Furthermore, the mismatch in the sizes was 
of comparable magnitude in both spatial di- 
rections. However, even in these cases the 
estimates of elliptic Gaussian orientation 
and aspect ratio were in good agreement. 

We may consider two general classes of 
explanations for the deviations from linear- 
ity observed in this study. First, the indepen- 
dent spatial and spectral measurements are, 
of necessity, not strictly comparable in sev- 
eral aspects Notably, they differed in both 
their temporal structure and energies. Spec- 
tral stimuli were delivered at 4.0 Hz or less, 
whereas spatial stimuli were rarely delivered 
at ~20 Hz. Further, the energy present in our 
spectral stimuli was orders of magnitude 
greater than that present in the small spots 
used for the spatial stimuli. Qne may pre- 
sume that the operating point of each cell 
was quite different under these two forms of 
stimulation, and it is also likely that the spa- 
tial and temporal sensitivity functions are 
not completely orthogonal. It is easily con- 
ceived that either or both of these factors 
may have biased estimates of the sizes of the 
elliptic Gaussians away from the reciprocal 
relationship predicted by Gabor theory. 

ation mav arise bv consid- 
ering each ceil as 

filter receptive-field structure. 
C 10, % 2, 13, 30) have reported s 

from linearity observed here. 

inhibition inversely proportional to distance 

from the cell under consideration. The re- 
ceptive fields of the neighboring cells will be 
close to the receptive field in space (by virtue 
of the retinotopic map, 17), orientation (by 
virtue of a columnar organization, 17), and 
spatial frequency (again, by virtue of a co- 
lumnar organization, 38). Stimuli in 2D 
space or 2D spatial frequency delivered 
somewhat removed from the peak response 
loci of the cell under consid .eration would 
recruit inhibition from these cells. In the 2D 
space domain, cortical lateral inhibition 
would tend to diminish the observed size of 
2D spatial response profiles. In the 2D spa- 
tial frequency domain, it would tend to di- 
minish the observed size of 2D spectral re- 
sponse profiles. Consequently, when the two 
20 profiles are compared assuming linearity, 
the observed size of the receptive fields will 
be less than expected given the results from 
the reciprocal domain. 

The results presented in Fig. 12 of this 
paper suggest that any spatially nonlinear ef- 
fect does not operate in a single specific di- 
rection, but rather in both directions at once. 
Thus we hypothesize no specific inhibitory 
connections between cells that depend on 
their respective physiological properties. It is 
possible that end-stopping (I 3), side-stop- 
ping ( 12) cross-orientation inhibition (30) 
and spatial frequency inhibition (IO) are 
manifestations of a nonspecific set of lateral 
inhibitory connections which tends to re- 
strict the occupied area of simple receptive 
fields in all directions in both domains simul- 
taneously. We may, for instance, anticipate 
the discovery of “corner-stopping” in the 
space domain and a complementary phe- 
nomenon in the 2D spatial frequency do- 
main. In terms of visual function this cortical 
lateral inhibition mav serve to enhance the 
contrast of the image representation in the 

likmding inrage /%xzture.s 
l’rnage sti2dct 2ie 

. 8,~ersus representing 

2D Gabor filters not only provide a unify- 
ing mathematical expression of simple re- 

space and frequency domains, sim- 
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ple receptive fields are designed to achieve an. 
optimal compromise with respect to resolu- 
tion in these two reciprocal spaces. 

But these filters possess certain properties 
that contradict current notions of how the 
brain analyzes the visual world. Most notable 
is the complete lack of spectral polar separa- 
bility. This result contradicts the view that 
the brain attempts to explicitly encode the 
image parameters we ordinarily consider, 
such as orientation and spatial frequency. 

There is an alternative view, based on the 
idea that visual receptive fields act as multi- 
dimensional filters. If the filter is linear, its 
output is related to its input by a convolution 
integral. These ideas are not new. What does 
not appear to be widely appreciated is what 
they imply. A neuron cannot encode any 
particular stimulus parameter, rather, it 
measures the similarity of the image to its 
receptive field. 

If the visual system encodes stimulus pa- 
rameters, then the output of a single neuron 
is ambiguous. It is possible to achieve a given 
firing rate within the neuron’s dynamic 
range with an infinite number of stimuli, 
which vary in their respective spatiotemporal 
parameters (consider an isoresponse ampli- 
tude contour around a 2D spectral response 
profile). One consequence of the linear filter 
interpretation is that the output of a single 
neuron is unambiguous. It provides a mea- 
sure of the similarity of the current local 
image structure to the structure of the 
neuron’s receptive field. 

Because the 2D Gabor filter serves so well 
as a model of the spatial organization of sim- 
ple receptive fields, we may assume that the 
principle on which its derivation rests also 
applies to the behavior of simple cells as local 
spatial operators. Thus it is apparent that 
simple receptive fields are constructed to 
provide resolving power in both the space 
domain (as though they were responding to 
local image structure) and in the spatial fre- 
quency domain (as though they were re- 
sponding to image structure over a larger 
scale). The 2D Gabor filter model resolves 
the “feature extraction” versus “spatial fre- 
quency filter” debate (1, 9, 1 1,24) in favor of 
both positions. 

Simple cells are selective for spatial posi- 
tion, but do not encode spatial position per 
se. Simple cells are selective for both orienta- 

tion and spatial frequency, but do not en- 
code either orientation or spatial frequency 
per se. Instead, the activity of each cell sig- 
nals the amplitude of a coefficient, which si- 
multaneously represents both spatial and 
spectral image structure in such a way that 
there is minimal joint uncertainty about this 
structure. Because 2D Gabor filters form a 
quasi-orthogonal complete basis set (3, 4), 
image information is preserved in a robust 
representation that makes explicit both spa- 
tial and spectral image attributes. Presum- 
ably, the set of simple cells spans the relevant 
stimulus dimensions, using a sampling logic, 
which remains to be uncovered, so that local 
image structure is represented at multiple 
scales and orientations, using a minimum 
number of cells. 

Even though the 2D Gabor filter model 
describes much of the spatial behavior of 
simple cells, the description it provides is in- 
complete. Neither binocularity (17), nor any 
time-dependent behavior of simple cells are 
addressed. Direction asymmetry, selectivity, 
and velocity (or temporal frequency) selec- 
tivity are topics that require further theoreti- 
cal treatment before we have a fully devel- 
oped understanding of the filtering processes 
of the simple cell. The most straightforward 
approach might be simply to generalize the 
underlying uncertainty principle to three 
space, where the variables of interest are 2D 
space and time, with appropriate considera- 
tions for causality incorporated. 

Vision is an information intensive sensory 
modality. We have shown that a particular 
information conservative optimization prin- 
ciple is utilized by the brain. These concepts 
may be of general utility in understanding 
the natural visual system and may find ap- 
plication in artificial vision as well. 
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