
Contributed article

A developmental approach to visually-guided reaching in artificial
systems

G. Mettaa, G. Sandinia,* , J. Konczakb

aLira Lab, DIST-University of Genova, Via Opera Pia, 13, 16143 Genova, Italy
bDepartment of Psychology, University of Du¨sseldorf, Du¨sseldorf, Germany

Received 5 December 1997; accepted 12 July 1999

Abstract

The aim of the present paper is to propose that the adoption of a framework of biological development is suitable for the construction of
artificial systems. We will argue that a developmental approach does provide unique insights on how to build highly complex and adaptable
artificial systems. To illustrate our point, we will use as an example the acquisition of goal-directed reaching. In the initial part of the paper
we will outline (a) how mechanisms of biological development can be adapted to the artificial world, and (b) how this artificial development
differs from traditional engineering approaches to robotics. An experiment performed on an artificial system initially controlled by motor
reflexes is presented, showing the acquisition of visuo-motor maps for ballistic control of reaching without explicit knowledge of the
system’s kinematic parameters.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Research activity linking studies on artificial systems to
‘brain sciences’ is certainly not new. Besides the studies on
artificial neural networks, substantial efforts are devoted
worldwide to building ‘physical models’ of segments of
biological systems with the aim of suggesting novel solu-
tions to robotics or processing problems and to advance our
understanding of human brain functions (Brooks, 1996;
Sandini, 1997).

On the other hand, the study of sensori-motor coordina-
tion in artificial systems has focused mainly on analyzing
and implementing skill levels comparable to those of adult
humans. For example, the control of robot heads and
visually guided manipulation tasks were studied with refer-
ence to psychophysical performance data of adult humans
and animals (Aloimonos, Weiss & Bandyopadhyay, 1988;
Bajcsy, 1985; Bajcsy & Tsikos, 1988; Ballard & Brown,
1992; Crowley, Bobet & Mesrabi, 1992; Capurro, Panerai,
Grosso & Sandini, 1993, 1996; Capurro, Panerai & Sandini,
1997; Coombs & Brown, 1990; Gandolfo, Sandini & Tistar-
elli, 1991; Grosso, Metta, Oddera & Sandini, 1996).

In spite of the recent advances in this area, the systems

implemented are still far from achieving human-like
performance levels and task flexibility. More importantly,
even for successful implementations the integration of such
skills as manipulation and gaze control proved to be more
difficult than expected. In our view, this difficulty arises, at
least in part, from the approach followed to construct
complex systems: to make the problem more tractable,
sensori-motor coordination is broken down into a set of
sub-problems defined by a specific sensory modality (e.g.
vision, audition, touch etc.) or specific motor skills (e.g.
manipulation, gaze control, navigation).

A different solution is used in humans and many other
vertebrates, where flexible and efficient levels of perfor-
mance are achieved through the simultaneous development
of sensory, motor and cognitive abilities. This process is not
simply caused by the maturation of single components or by
learning a progressively more sophisticated set of skills.
Instead it is marked, particularly in the very early stages,
by a sequence of changes of the neural circuitry, by a stra-
tegic exploitation of the environment with a limited set of
motor skills that are present at each developmental stage,
and finally, by the ability of biological systems to calibrate
themselves in the presence of ongoing environmental and
internal (e.g. anthropometric) changes.

In this view development is not a mere summation of
discrete learning events. The degree of learning is deter-
mined by the learner’s developmental state, which in turn
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is the result of complex interactions of maturational and
endogenous processes with the environment.

We have now a reasonable understanding of the
developmental progression of reaching in infants. Yet,
a mere description of a process of biological develop-
ment does not shed any light to the issue of how
physiological mechanisms of development are helpful
for building complex artificial systems. A second step is
necessary to bridge this gap. This step is to outline the
control problems that have to be solved by human infants
when trying to reach for objects in their immediate work-
space. As we will see, the control problems for newborn
humans and a robot may be expressed in a similar way in
spite of the different ‘technologies’ used for the actuators
and sensing elements. For the sake of our argument at this
point, let us divide the human organism into two distinct
elements—the central nervous system (CNS) as the
‘controller’, and the body as the ‘plant’ (we realize that
this is an undue simplification).

The first question to ask in the context of motor control is,
what physiological or movement parameters does the
system actually have to control to achieve its goal of reach-
ing for a target in extrapersonal space? To answer this ques-
tion, consider that each limb segment of the human arm is
moved by a set of actuators with spring-like properties. In
order to control the arm in a coordinated manner any
controller needs to have at least reasonable approximations
of inertia, viscosity and stiffness parameters.

That is, a first step for a control system must be the
identification of the plant’s parameters. A second step
before goal-directed reaches are possible is the mapping
of sensory maps onto available motor maps. That is, the
system must be able to localize objects in extrapersonal
space, and should have a knowledge where its limbs are
positioned relative to the object. In a traditional learning
paradigm, these two processes of calibration have to be

completed before the system can begin to work on control
(Kalveram, 1991; Kuperstein, 1988).

Today the view of a parallel development of calibration
and control processes seems widely accepted by researchers
working on neural modeling of adaptive eye–hand coordi-
nation (Jordan, 1996; Kawato, Furukawa & Suzuki, 1987).
Yet, most researchers model this process as a learning and
not as a developmental operation (Jordan & Flash, 1994;
Kuperstein, 1988). Implicit to such an approach of artificial
eye–hand coordination is the premise that all behaviors of
the system have to be learned. However, this assumption is
not necessarily true for biological systems. One major
difference between a biological and artificial system is
that a biological system does not come as a ‘blank slate’.
In a wide variety of different species one can observe stereo-
typed inborn movement sequences that are clearly
unlearned. Ethologists have argued for a long time that
many behaviors, especially those of lower animals, cannot
be explained on the basis of sensori-motor learning alone
(Eibl-Eibesfeld, 1970; Gould, 1982). Newborn human
infants already possess a repertoire of coordinated move-
ments. For example, they can perform a series of complex
multi-joint bilateral movements (i.e. kicking) and have
available a set of so-called primitive reflexes. These primi-
tive reflexes resemble a set of complex movement patterns
that are triggered by a sensory stimulus.

Yet, these motor primitives may also serve a second func-
tion. They help to build up a relationship between vision and
proprioception. For example, during pre-reaching the
presence of the Asymmetric Tonic Neck Reflex (ATNR)
plays a crucial role in allowing babies to see their hand
and in increasing visual fixation of the hands (White, Castle
& Held, 1964; Bushnell, 1981).1 Thus, this multi-muscle
synergy coupling arm and head movements provides an
effective means for linking visual and proprioceptive maps.

2. Developmental engineering

Some of the peculiarities of human development outlined
in the previous section are particularly relevant from the
engineering perspective of building a complex adaptive
system.

The first and perhaps major observation relates to the fact
that during development the infant is a self-contained, func-
tional system with matched sensorial, motor and cognitive
abilities. Motor reflexes and sensory-triggered motions are
present at birth, exploiting the still limited sensory and
motor abilities and allowing the infant to start some form
of interaction with the environment and the acquisition of
first sensori-motor experiences. During the initial months,
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1 The stimulus for the ATNR is the turning motion of the head, which
subsequently will trigger a complex bilateral synergy. The infant’s arm will
be extended to the side the infant is looking, effectively bringing the hand
into the field of view. The contralateral arm is flexed as part of crossed
extensor reflex spanning both homologous limbs.

Nomenclature

q Generalized coordinate vector (all joints are
revolute) (rad)

q0 Resting point (in a spring-like equation) (rad)
t Torque field generated by an actuator (Nm)
k Stiffness coefficient (Kg m2/s2)
a Activation coefficient (for the actuators)
C Activation coefficient (for the controllers)
I Connection matrix for the controller structure
T Torque field generated by a controller (Nm)
x End-point position (m)
L Direct kinematics
JL Manipulator Jacobian
F Force field for a controller (N)
f Motor–motor map
f̂ Approximation of the motor–motor map
N Zero-mean, uniform distributed noise



some of the abilities are only temporarily present (for exam-
ple, some of the early reflexes) and they disappear as soon as
more mature skills develop. The control structure changes
with age starting from an almost purely reflexive system at
birth, passing through phases where basal muscular syner-
gies are formed, towards a state where stable kinematic
patterns are expressed—a sign that the redundant degrees
of freedom of the neuromuscular system are then under
voluntary control. From the engineering perspective this
means a shift of emphasis from the ‘final product’ to a
‘process-oriented’ approach.

Another issue worth stressing is the role of the infant’s
own body in development. In biological systems, develop-
ment is very much dependent on the ability of the system to
interact with the external world. Many early sensori-motor
experiences are stimulated by the newborn’s own body
motions which becomes an essential tool to establish a
coupling between perception and action. On a neuronal
level this organism–environment interaction is necessary
to establish new connections, and to prune those that proved
to be unfunctional (O’Leary, 1992). Self-generated motor
commands elicit sensory feedback (like proprioceptive
signals, motion in the visual field, tactile and acoustic
stimuli) that not only give the newborn a motivation to
repeat or to avoid a specific action, but also serve to adjust
and refine the voluntary motor commands. The emergence
of the distinction between what is and what is not control-
lable, is one of the first achievements of a system whose
survival depends on its interaction with the outside world.

Based upon these observations we designed an experi-
ment with a robot to demonstrate the utility of a develop-
mental approach for the implementation of an adaptive
system engaged in a visually guided reaching task.

2.1. Development of visually guided reaching

If we consider an artificial system engaged in a reaching
task, the number of motor degrees of freedom (DOF) that
have to be controlled in parallel can be as high as 10 or
more. Learning how to control all these DOF simulta-
neously, can be done, but requires most probably a very
high number of trials to be performed, in order to reach
the required sequence of motor commands.

In a classic control theory approach, some of the system’s
parameters required by the controller are estimated a priori
while others are identified at run-time by means of ad-hoc
calibration procedures (Yoshikawa, 1990). Subsequently, a
general purpose or a customized control law is applied.
After the calibration procedure the system becomes fully
functional and changes of the internal parameters require
re-calibration of the system (Papanikolopoulos & Khosla,
1993; Samson, Borgue & Espiau, 1991). Following this
approach the problem is simplified by an accurate design
but it might require a lot of preliminary effort during the
design process.

Other solutions suitable to learn how to control a complex

systems have been proposed. Among them, thefeedback
error learning (Kawato et al., 1987) and thereinforcement
learning (Sutton & Barto, 1998). Along the same line of
research we designed an alternative solution based on direct
motor primitives representing multi-joint synergies (i.e. for
arm extension). In this case a single command may produce
complex multi-joint coordinated movements without the
voluntary control of each individual DOF Examples of
such multi-joint synergies are the ATNR (see the previous
section) and the grasping reflex which activates a coordi-
nated grasping movement of the hand when the palm
touches an object. In order for this approach to be feasible
and effective, the crucial points are how to represent the
motor primitives, the mechanisms of sensori-motor
mapping, and their developmental rules.

2.1.1. Motor primitives
Isolated skeletal muscles act like non-linear (visco-elas-

tic) actuators whose length-tension properties are modulated
by neuromuscular activation (Rack & Westbury, 1969). For
the purpose of the present work, however, a simplified linear
model of the muscles (Kandel, Schwartz & Jessel, 1991) has
been used to express the torque exerted by a muscle on each
joint:

t � 2ak�q 2 q0� �1�
whereq0 is the actuator’s resting position,a is the activation
value which modulates the overall stiffnessk (i.e. the spring
constant of the muscles).

Assuming this model, a possible procedure for coding
motor primitives is the so-called force fields approach
proposed by Mussa-Ivaldi and Bizzi ((Gandolfo & Mussa-
Ivaldi, 1993; Mussa-Ivaldi & Giszter, 1992; Mussa-Ivaldi,
Giszter & Bizzi, 1993) recently extended to nonlinear visco-
elastic actuators (Mussa-Ivaldi, 1997)). According to this
theory, the neuromuscular control of each joint can be
described by means of a torque field expressed by:

t�q;a� �2�
where q is the vector of generalized coordinate,a is the
activation value andt is the generalized torque field.

In case of a multi-joint structure (such as a limb) the
overall torque is expressed by:

t �
X

i

ti�q;ai� �3�

whereai are the control parameters.
From the mechanical point of view, the system controlled

by these actuators is passive. Consequently it has a stable
Equilibrium Point (EP) in its space state�q; _q�: The EP is (a)
the point where the torque field described by Eq. (3) is zero,
(b) the intersection of the actuators’ angle–tension curves. If
we apply the torques described by Eq. (3) to the multi-joint
structure, its state will eventually reach the EP (at equili-
brium). Thus, the EP can be thought of as the point toward
which the configuration is aiming at each instant of time.
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In theory, specification of the EP is enough to drive the
system to a given configuration. On the other hand, experi-
mental results in animals and humans (Mussa-Ivaldi et al.,
1993) support a rather different view. In fact, it seems that
movement is obtained by shifting the EP smoothly from the
start to the end, rather than suddenly moving it to the target
position. The sequence of EPs defines what is called a
virtual trajectory (Hogan, 1985). It is worth noting that,
due to the dynamic parameters of the arm, the actual
arm’s trajectory is different from the virtual trajectory (in
other words it is like pulling a toy car with a rubber band: the
trajectory in space of the pulling hand is different from the
trajectory of the car because of the stretching of the rubber
band).

The simplification (and in some sense the feasibility)
of this schema comes from the experimental observation
that any position of the EP in the arm’s configuration
space (and consequently its motion) can be obtained by
a linear combination of a small number of motor primi-
tives each represented as a torque field (the so-called

basis field(Mussa-Ivaldi & Giszter, 1992; Mussa-Ivaldi et
al., 1993)).

In our model, each motor primitive is a structure which
activates a single or a group of actuators (see also Fig. 1). It
is actually a synergy which combines (linearly) the effect of
a set of actuators by activating them synchronously by
means of only one control parameter (i.e.ai � Cj�: Primi-
tives can be described by the following torque field:

T j�q;Cj� �
X

i

I jiti�q;Cj� �4�

wheret i is theith actuator field,Cj the activation value and

I ij �
1 if the jth controller activates theith actuator

0 otherwise

(
�5�

T j are exactly the basis fields as shown in Fig. 2. The total
field T is expressed by the following:

T�q� �
X

j

T j�q;Cj� �
X

j

X
i

I jiti�q;Cj� �6�

We designed a priori the connections between actuators and
primitives (throughIij ). Thus in our case the basis fields are
fixed and embedded into the system. The following table
represents theI matrix:

Primitive (j) Actuators (i)

1 2 3 4

1 1 0 1 0
2 0 1 0 1
3 1 0 0 1
4 0 1 1 0

where primitives are labeled withj and actuators withi as in
Eq. (5) connections.

Given this assumption, the task of the controller is to
combine the basis fields by providing, for each point of
the configuration space, a set of control parametersCj : A
schematic diagram of the controller is shown in Fig. 1 in the
case of four basis fields and two joints.

A further simplification allowed by the force field
approach comes from the fact that control parameters are
not dependent on any particular frame of reference (Mussa-
Ivaldi & Giszter, 1992). This is easily shown converting Eq.
(6) into extrinsic coordinates. Letx � L�q� be the direct
kinematics mapping of the arm andJL � 2l=2q its Jaco-
bian. For any configuration whereJL is not singular we can
write:

J2T
L t � F �7�

whereJ2T
L is the transposed inverted Jacobian,t the torque

vector andF the corresponding force vector in extrinsic
coordinate. Substituting Eq. (7) into Eq. (6) and considering
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Fig. 1. Controller structure: motor primitives, represented by torque fields
are combined (weighted byC1, C2, C3 andC4). The overall field ‘guides’ the
arm end-point toward its EP.

Fig. 2. Two of the four basis fields represented as torque fields in joints
coordinates (see also Figs. 1 and 3). Ordinate and abscissa show joint
position (joint 1 and 2) in degrees. Arrows point to the common EP of
the two joints. Actual resting position of each actuatorq0 was preset by
the experimenter.



linear actuators (see Eq. (1)), yields:

J2T
L T �

X
j

CjJ
2T
L T j �8�

whereJ2T
L T � F is the total force field andJ2T

L T j � Fj are
the basis fields in extrinsic coordinate. Substituting yields

F �
X

j

CjFj �9�

Eq. (9) shows that the control coefficientsCj are invariant
under coordinate transformation (for a discussion of the
underlying conditions see Mussa-Ivaldi and Giszter, 1992).

A similar result applies for the redundant case (whereJL
is not invertible) depending on the motor primitives consid-
ered (Gandolfo & Mussa-Ivaldi, 1993). Given these results
it is correct to freely exchange torque fields generated by
actuators with force fields applied to the arm end-point
because the two representations are indeed equivalent.

From the developmental point of view, this approach is
advantageous for two reasons: (i) the kinematic parameters
are embedded in the resulting force field (Hogan, 1985); and
(ii) each force field corresponds to the activation of a
synergy of muscles and does not require the coordinated
control of each degree of freedom. Furthermore the ‘innate’

motor synergies can be easily represented through basis
fields (or a combination of them). Figs. 2 and 3 show two
exemplar basis fields as used in our experiments.

Fig. 2 shows two torque fields in joint coordinates while
Fig. 3 plots the corresponding two fields converted in Carte-
sian coordinates. The picture in Fig. 4 shows the
corresponding positions of our robot at equilibrium.

2.1.2. Motor–motor coordination
Let us now address the issue of how to drive the motor

plant with positional information obtained by vision. In
other words, we want to define a way of transforming the
visually specified, spatial position of the target into the
control parametersCj : If this task were implemented on
the basis of the Cartesian position of the target in space,
the kinematics of the eye–head system as well as of the
arm, would have to be explicitly considered in order to
select (or combine) the appropriate force fields. The solution
we propose is based on the use of a direct mapping between
the eye–head motor plant and the arm motor plant. One
premise we make is that the position of the fixation point
coincides (at least at some stage of the control process) with
the object to be reached. In other words, the reaching of an
object starts by looking at it. Under this assumption, the
fixation point can be seen as the ‘end-effector’ of the eye–
head system (Fig. 5) and its position in space with respect to
the shoulder is uniquely determined by the motor commands
controlling the position of the head with respect to the torso
and that of the eyes with respect to the head. That is, the
position in space of the fixation point can be coded directly
using motor commands from any parameter set used to
control gaze direction. Mapping these motor parameters
into the arm’s force field is what is required to coordinate
visual information and motor control.

The system learns the transformation by collecting vector
pairs of the form ‘head control vector’–‘arm control vector’
while interacting with the environment. We call this
approach motor–motor coordination (Gandolfo, Sandini &
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Fig. 3. Two of the four basis fields represented in Cartesian coordinates
(see also Fig. 2). Ordinate and abscissa represents the plane where the arm
motion has been constrained.

Fig. 4. Equilibrium robot positions corresponding to the exemplar basis fields depicted in Figs. 2 and 3.



Bizzi, 1996), because the coordinated action is obtained by
mapping motor commands onto motor commands. It is also
worth noting that the resulting map is, indeed, a representa-
tion of the end-effector command in egocentric coordinates
and it is consequently in agreement with recent biological
findings (Laquaniti & Caminiti, 1998).

3. The experiment

Based upon the choices presented in the previous sections
an experiment was designed to show how reaching behavior
could be acquired by building a map from the head activa-
tion values to arm activation values.

In this experiment a four DOF set-up was used: two DOF
to control the gaze direction of the camera and two, control-
ling the position of the end-effector on a plane. The position
of the head and arm resembles an anthropomorphic structure
and their relative position is fixed but unknown to the
system (see Fig. 5).

The visual part is based on a color camera with a space-
variant distribution of sensing element generating images
with about 2000 pixels in a log-polar format (Capurro et
al., 1997; Panerai & Sandini, 1998; Sandini & Tagliasco,
1980; Sandini, Gandolfo, Grosso & Tistarelli, 1993). The

processing is distributed between a Pentium 200 computer
and a Sun workstation controlling the arm using the RCCL
software package (Lloyd, 1992). The two systems are linked
through a TCP/IP ethernet connection.

The following constraints were imposed to obtain the real-
time performance required. First, the visual localization of
target and end-effector isbased ona simple color segmentation
algorithm. The target is identified by a green region and the
end-effector by a red one (in both cases the position of the
segmented region in the image plane is identified by the center
ofgravity). Thesecondconstraint is that only the arm motion is
learned while the mapping between the position of the target in
the image plane and the eye’s motor command required to
fixate the target is tuned beforehand. Lastly, the representative
control parameters we choose in order to describe the head
plant (gaze direction) were the joint angular positions. It is fair
to say that there are at least two possible choices: (1) joint
positions; (2) head activation values. Both solutions provide
their own advantages and drawbacks. We choose to use joint
positions in order to keep implementation as simple as possi-
ble. Integration of a more interesting gaze control strategy
such as those described in (Berthouze & Kuniyoshi, 1998;
Capurro et al., 1997; Panerai & Sandini, 1998; Panezai,
Metta & Sandini, 1999) is currently under implementation.

These constraints do not affect, in our view, the main
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Fig. 5. The experimental setup. It consists of a 10 degrees of freedom robot, links are indicated by continuous lines. The two links originating from the cameras
are ‘virtual’ and their intersection represent the fixation point (the end-effector of the head system). Joints are depicted as small quadrilaterals, their axis of
rotation are along the corresponding links. The four joints utilized in our experiments are marked with a superimposed circle.



points of the approach proposed. However it is fair to say
that removing some of these constraints (e.g. introducing a
redundant manipulator) may likely introduce new problems,
not accounted for at this point.

Given these considerations the map, in this particular
experiment, can be represented by:

C � f �q� �10�
where f is the unknown true function which must be
approximated by learning,q [ R2 is the head joint angle’s
vector andC [ R4 is the arm activation vector.

The (q, C) pairs required to estimate the functionf are
measured whenever the system is fixating its own hand (and
not when the gaze is fixating the target). The values of the
activation vectorsC are stored in a look-up table (the
motor–motor coordination map) whose input spaceq is
sampled with uniform resolution (a vectorC can be stored
in each location or ‘cell’). If a cell has never been visited,
but the function value for that input position is needed, the
value stored in the nearest visited cell is used instead. Learn-
ing proceeds by updating the values ofC each time the
corresponding head joint vector is used to fixate the end-
effector.

3.1. Initialization of the motor–motor map

The first problem to be solved is how to initialize the map
in a meaningful way (or, in other words, what type of motor
primitives should be used as the basis of the learning proce-
dure). In natural systems this is obtained by reflexive
mechanisms like the ATNR which has the role of maintain-
ing the arm within the field of view.

In our experiment, the robot utilizes a discrete approxi-
mation of the ATNR by initializing the head–arm map so
that the arm is extended roughly in the direction the head is
turned. As shown in Fig. 6, each map stores three initial
values of each of the four elements of the activation vector
C corresponding to the three head position. The coordinate
axes represent the head’s tilt (abscissa) and pan (ordinate)
angles.

Each map is virtually empty apart from the three ‘dots’
representing the valuesC corresponding to three head posi-
tions (see Fig. 6). The three activation vectors span
uniformly the arm workspace and were computed so that
whenever they are used the arm end-point would move into
the camera field of view. Consequently, even if the choice of
just three positions is arbitrary, this initialization of the
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Fig. 6. Initial configuration of the head–arm mapping. With reference to Fig. 1 the four plots show (coded in gray levels) the weightsC1, C2, C3 andC4 used to
linearly combine the basis fields as described in Section 2.1. Ordinate and abscissa are the head joint angles (in degrees). In this figure only three points are
defined, corresponding to the three initial reflexes. The resulting three force fields and arm’s equilibrium positions are presented in Fig. 7. For example, the
point corresponding to pan and tilt equal to zero, which represents the look-ahead condition, holds the controller’s activation valuesC1, C2, C3 andC4 causing
the arm to be extended in front of the body. See Fig. 10 for the corresponding plots after training.



head–arm mapping is advantageous with respect to a
random sampling of the workspace for two reasons. First
the system is put in the conditions to be able to learn from
visually measured errors (the arm is kept in the field of
view) and second the initial values implicitly limit the
exploitation space to accessible and safe regions of the
workspace.

The arm’s postures corresponding to the initial values of
C are shown in Fig. 7. It is worth noting that initially the
head can explore its entire workspace while only three posi-
tions of the arm are possible. The goal of the learning proce-
dure is to fill the empty space of the maps.

3.2. Trajectory generation

Both head and arm motions are controlled by torque
values representing head and arm force fields. For the
head, the instantaneous torquet is obtained from the acti-
vation valuesCi derived from the gaze error (see Fig. 8).
The gaze error is measured as the target position with
respect to the image center expressed in image coordinates.

For example, if the target is located to the right of the
fovea, the activation of the right muscle is increased by an
amount proportional to the error, while the antagonist is
inhibited (activation is decreased by the same amount).
The same applies for the tilt axis controlling the up–down
motion.

Because the arm has higher inertia and friction of the
reduction gears, the extracted activation vectorsC cannot

be applied instantaneously. An instantaneous application of
a torque step would bring the force outside the operational
range of the motor. To avoid this situation, a mechanism
transforming the activation values obtained by the map into
smooth sequences is required. Such gradual rise in force is
also observed in biological motion (Kandel et al., 1991). A
possible biological mechanism for incremental rise in force
levels is motor unit size, with smaller units discharging first
during the contraction (Hennemann, Mendell & Brooks,
1981).

To achieve a smooth rise in torque, we applied a linear
interpolation for a fixed number of steps between the initial
and the final activation values:

Ci11 � Ct 1
Cfinal 2 Cinitial

nsteps
�11�

whereCt is the activation vector at thetth time step,Cfinal the
target activation vector,Cinitial its value when the command
was issued, andnstepsthe number of steps.

This interpolation procedure is particularly effective in
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Fig. 7. Force fields (upper row) and corresponding equilibrium arm position (lower row) of the three initial reflexes. Force fields are represented in joint’s
coordinates and arrows point to the common equilibrium position of the two arm’s joints. See also Fig. 6.

Field
generation Arm

headq
Control

computation

)(tCGaze error

Fig. 8. Head control scheme. The position error is extracted from the
image, converted and used directly to change the activation values of
head actuators. The system in this case is using a closed loop approach
as in the visual servoing paradigm.



our case, because even if new activation values are issued at
approximately 1 Hz (due to the visual and learning
processes), the arm controller (running at 50 Hz) can easily
generate the interpolated values.

At each time instantt, it is possible to determine an EP
which is a function ofCt by imposing:

T �
X

j

T j �
X

j

Cj �
X

i

I jiti � 0 �12�

and solving forq.
The sequence of EPs defines the arm’s virtual trajectory

(see also Section 3.4). However, the sequence ofC through
time also determines the shape of the trajectory.Ct can be
considered as a set of parameters which are in principle
learnable. In fact, they could be tuned in order to straighten
the trajectories or to reduce overshoots.

Consider the usual Lagrange equation for a planar manip-
ulator:

T � A�q� �q 1 B�q; _q� �13�

whereT is the generalized torque applied to the arm. Substi-
tuting the expression forT, generated by the set of elastic
actuators and controllers as previously defined, yields:

X
j

Cj

X
j

I jiti � A�q� �q 1 B�q; _q� �14�

Two considerations stem from the previous equation: (i)
the real trajectory of the arm is determined by the shape
and evolution in time of the torque field (left hand side
of equation); (ii) as already pointed out, the shape of
the torque field is controlled byCt. If the system were
able to tuneCt beside the simple linear interpolation, it
could also change the resulting arm trajectory precisely.
Although this could be a sensible strategy (for example to
learn how to get a straight trajectory instead of a curved one)
it was beyond the available computational power of our
system.

The overall control scheme is shown in Fig. 9. The first
stage of the processing is implemented in the map contain-
ing the arm activation vector. These values are interpolated
and the output from the trajectory generator is sent to the
actuators simulator (identified by the block ‘Field genera-
tion’) which generates the torque commands.

3.3. The learning procedure

The learning algorithm can be formally described as
follows:

Repeat forever.

1. A proper stimulus appears in the field of view.
2. By fixating the visual target the robot also initiates

arm motion by computing the arm activation vector
C in the following way:

f̂ i�q�1 n �15�
The term n describes a zero-mean uniform noise
component introduced to simulate errors in the arm
control. f̂ i is the estimate off at theith iteration.

3. The vectorC is used by the arm controller which
computes the actual torques to drive the motors and
consequently the arm moves toward the new EP.

4. At this point the arm is as close as possible to the
target (initially it is not very close but certainly it is
in the field of view) so that the system can re-direct the
gaze to its own hand.

5. As a result of the previous step a new pair (q, C) is
available which is used to update the map by comput-
ing the valuef̂ i11�q� in the following way:

f̂ i11�q� � f̂ i�q� nv 2 1
nv

1
C
nv

�16�

wherenv is the number of visits of the cell correspond-
ing to q.

6. The arm then returns to a fixed resting position (near
the chest).

It is important to note that if the procedure were noise-
free the motion of the arm toward the target (end of step 3)
would always bring the end-effector in the same final posi-
tion and the system would not be able to learn (in fact it
would always update the same cell of the map with the same
vectorC). In human development, the system is not noise
free at birth. For example, nerve growth is not completed
giving rise to slowed nerve conduction that is prone to inter-
ference, which ultimately may lead to poor sensory data (i.e.
low visual acuity) and noisy motor output (Kinney, Brody,
Kloman & Gilles, 1988; Konczak & Dichgans, 1997;
Konczak, Borutta & Dichgans, 1995, 1997). In our experi-
mental condition errors were introduced ‘naturally’ by the
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Fig. 9. The overall arm’s control scheme. The position of the head (qhead) addresses the map which outputs the activation vector for the arm. This stage is
followed by a trajectory generation which interpolates linearly between activation vectors. The resulting force field is then computed and used to generate the
torques which drive the arm motors.



friction of the arm reduction gears and ‘artificially’ by intro-
ducing a noise term in the motor–motor transformation (see
step 2). During learning and subsequent retention trials fric-
tion of the arm could not be altered. However, the artificial
noise was removed, whenever we tested the accuracy of
reaching movements.

A map obtained after a training period of about 5 min and
consisting of approximately 100 trials is shown in Fig. 10. It
is worth noting that, in spite of the sparse initialization of the
map (see Fig. 6), the distribution of the activation values
after 100 trials is rather continuous considerably extending
the reaching skills.

A key point of the overall process is that the body plays
the role of both the actor (by exploring the environment) and
the role of the environment (by using the eye’s fixation point
as the target of the reaching process). This allows the overall
system and the learning process to be self-contained and
adaptive to kinematic and dynamic changes of the internal
parameters (such as body segments length and weight).
Moreover, the process is intrinsically egocentric. The
motor–motor mapping, at least initially, does not necessa-
rily bring the end-effector near to the fixation point (in fact it
will bring the arm as close as possible to the target on the
basis of what has been learned so far). However, instead of
correcting the error by moving the arm, the direction of gaze

is redirected to the end-effector and the arm motor command
previously issued is associated to the new eye position. In
other words, the role of the visual target appearing in the
environment has the only function of initiating the arm
motion while the learning process is based on the act of
looking at the end-effector. As the learning process
proceeds, the initial arm motion gets closer and closer to
the visual target, and eventually, the corrective gaze shift
will not be necessary unless kinematic changes occur.

3.4. Experimental results

Two different experiments were performed to illustrate
the performance of the proposed approach. The first
describes the learning of ballistic reaching movements
toward static visual targets, the second presents the results
of smooth coordinated eye–hand movements toward
moving targets emerging from the learned ballistic beha-
vior.

In order to test the performance of the system at different
learning stages, the position in the arm’s workspace of three
targets was calibrated beforehand by manually positioning
the end-effector at target center and storing the correspond-
ing joint angle values measured by the encoders. Each target
consisted of a piece of cardboard about 5× 5 cm in size.
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Fig. 10. Head–arm mapping after training (refer also to Fig. 6 to compare the maps shown here with those before training). Ordinate and abscissa are thehead
joint angles (in degrees). Grey levels represent activation valueC1, C2, C3 andC4 of each controller (see Section 2.1).



During the training phase the target of the reaching task
was manually moved by the experimenter over the arm’s
workspace while the reaching behavior was continuously
activated. From time to time training was suspended and
the performance evaluated.

During the evaluation phase the three targets in the cali-
brated positions were activated one at a time and the trajec-
tory of the arm stored. The reaching error was measured by
computing the Euclidean distance between the pre-cali-
brated target positions and the position of end-effector at
the end of the reaching movement. At least 30 trials (10
for each target) were executed and the average error and
standard deviation were computed. During this evaluation
phase the map update was stopped and the noise term
removed (see Eq. (15)).

The reaching error before learning, after 51 trials and
after 134 trials is reported in Table 1.

It is important to note that trajectories are not learned by
the system. They are just a consequence of the applied
control strategy as described in Section 2.

A typical arm trajectory after training in joint and Carte-
sian coordinates is shown in Fig. 11. In both graphs, the
presence of overshooting of the real trajectories is observed.
This is the effect of not knowing the dynamic parameters of
the arm and particularly of the arm’s inertia. As a conse-
quence the torque applied in the initial part of the movement
brings the end-effector beyond the target. The ‘force field
approach’, however, corrects this overshoot by applying a
force in the opposite direction and partially compensates

this lack of dynamic information. In our current schema
there is no possibility to ‘learn’ how to avoid this overshoot
because this would require the tuning of other parameters
such as the stiffness or the presence of compensating
modules which explicitly take into account dynamics
(Ghez, Gordon, Ghilardi & Sainburg, 1996).

Similar considerations can be drawn by observing the
plots in Fig. 12. In this case reaching movements toward
three different targets at the end of the training phase are
shown. Trajectory toward target 1 shows the same overshoot
described for Fig. 11. The opposite happens when the most
distant target 3 is reached. In this case the end-effector
undershoots the target. Also in this case the remaining
error can be attributed, in part, to intrinsic errors of the
learning process, but also to the accumulation of errors
deriving from friction (which is not only unknown but
also partly unpredictable). Trajectory toward target 2
shows a back-and-forth motion with the final position
reached after a couple of adjustments. This behavior is
caused by the fact that the system is continuously operating
and, consequently, whenever the end-effector partially
covers the target, the head shifts the fixation point over
the center of gravity of the remaining visible part. This
change of fixation generates a new ‘force field’ and, conse-
quently a new trajectory. Eventually the visible part of the
target does not change (the center of gravity of the target
does not move any more) and the arm reaches its final
position.

At the end of the training phase the system was also tested
in the task of reaching toward a smoothly moving target. In
this case both the head and the arm are continuously moving
to track the target. It is worth noting, that this condition was
totally new to the system which, during the training phase,
was programmed to move to a flexed fixed position of the
arm after each reaching motion.

In both panels of Fig. 13 the continuous line shows the
trajectory of the target moving at constant speed. Before
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Table 1
Endpoint positioning before learning and after 51 and 134 trials. The error
expresses the Euclidean distance in millimeters between the end-effector
and the target at the end of reach

Number of trials Before 51 134

Error (mm) 77.8̂ 15.0 39.5̂ 12.0 28.8̂ 8.9

Fig. 11. Typical arm trajectory in joint (left) and Cartesian (right) coordinates. Dotted lines plot the real arm trajectories, continuous lines plot virtual
trajectories.× is the final end-point position and is the actual position of the target. The vectors plotted every five data points are torques in joint space (as
generated by the motors) and forces in the Cartesian space. Left: joint 1 is the shoulder position while joint 2 refers to the elbow. Right: theXZ plane is the
horizontal plane representing the arm workspace. This particular motion is a reach to the left involving mainly the motion of the elbow.



training the arm motion is composed of two motion units
each corresponding to one of the three initial force fields.
The movement was dysmetric. The endpoint missed the
target by nearly 10 cm. After training the motion of the
endpoint is much smoother and the overall tracking perfor-
mance is certainly improved as the trajectory of the endpoint
stays closer to the target’s trajectory. Also the final error is
drastically reduced.

The remaining small oscillations are mainly due to the
discrete nature of the look-up table approximating the map
and to some extent to the scheme applied to control the head
movements. Beside this defect, the enhancement of the posi-
tioning abilities is very noticeable.

4. Conclusion

This paper presents a framework for the implementation

of adaptable sensori-motor strategies for visually guided
reaching. The implemented framework is inspired by
studies on human development, and we attempt to achieve
visuo-motor coordination by adopting biologically plausible
control structures.

We demonstrate the development of visually-guided
reaching from an initial state characterized by a set of reflex-
ive behaviors (motor primitives). Subsequently, visuo-
motor skills are acquired by refining the mapping between
sensory information and motor commands. During this
developmental progression there is no distinction between
plant’s calibration and control, and the kinematic and
dynamic parameters are not explicitly identified as in clas-
sical control theory approaches. This developmental process
may be viewed as adaptive change towards competence
(Keogh & Sugden, 1985). Here, adaptive change is not the
same as learning. In distinguishing between learning and
development, we regard learning as a function of develop-
ment rather than development being the overall summation
of a series of learnings (Piaget & Inhelder, 1969). This view
implies that learning is shaped by the learner’s developmen-
tal state. In practice, this means that the system incremen-
tally adapts its learning goals to the evolving developmental
state. Engineering such a process means being able to define
a sequence of events that cause the system to become incre-
mentally more skilled. One way of looking at it is to model a
developmental stage as a set of control variables (in our case
motor but, in general, also sensory and cognitive) and to
model the process of development as a progressive, adaptive
selection of the learning parameters.

Consider the developmental state of a human infant at
birth. That state is characterized by an incomplete visuo-
motor map, by imprecise knowledge of the plant, by the
availability of basal intra- and interlimb synergies and a
set of primitive reflexes. This setup allows the infant to
explore and to exploit the environment even at that
early age. The exact mechanisms of this ontogenic
process in the first weeks of life are still not clear.
However, visuo-motor coordination is likely based on at
least two motor maps: a spinal and a cortical one. We
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Fig. 12. End-point trajectories in Cartesian coordinates generated during
reaching toward three different targets.W represents the final end-point
positions and× the target positions. In all cases movements started with
the arm in a resting position flexed close to the body, i.e. roughly in a
(200;0) position.

Fig. 13. Tracking a moving target. The continuous line shows the trajectory of a target moving at constant speed in the arm’s workspace. The target was
moving at about 8 cm/s from (350;100) to (200;330). Dotted lines represent the endpoint trajectory. The left plot has been obtained using the map before
training, the right one refers to the map after 134 training trials.



know today that most cortico-spinal projections are not
differentiated at birth (O’Leary, 1992) and that spinal reflex
circuits provide the system with the reflexes and basal
synergies necessary to initiate simple interactions with the
environment.

As maturation progresses, cortical control loops become
operational, building a map based on existing reflexes and
basal synergies. In this sense, there seems to be no need to
assume a cortical suppression mechanism inhibiting spinal
reflexes (Gesell, 1946; McGraw, 1946). Instead, the devel-
opment of visuo-motor coordination looks more like a
process during which the system learns how to ‘drive’ the
spinal motor primitives. The autonomy of the spinal motor
system becomes evident after the disruption of cortical
input. Spinal synergies are preserved and still functional
(for a review see Grillner, 1981).

With our robot setup we attempted to follow a similar line
of developmental events. We equipped our robot with a set
of basal synergies represented by basis fields. These
synergies were embedded into the system as a set of initial
visuo-motor reflexes. Their biological analogs were the
Asymmetric Tonic Neck Reflex, where head rotation trig-
gers arm extension, thus bringing the reaching hand in the
field of view. In addition, the biological parallelism was
stressed at the level of the actuators by simulating the elastic
properties of the muscles and exploiting those properties by
means of motor primitives based on force fields. Visual
processing, although rather simple, was performed on
images acquired by an anthropomorphic sensor simulating
the space-variant distribution of photoreceptors in the
human retina.

The current implementation is still constrained by prac-
tical reasons (see Section 3). One such constraint is related
to the use of color to drive visual segmentation and the
identification of the point to be reached. This is not a signif-
icant constraint, at least for the scope of the present article,
and can be substituted by any visual primitive driving the
fixation point toward the point in space to be reached. The
second constraint is the fact that learning is limited to the
control of the arm while the mapping between position in
the image plane and eye–head motor command is pre-cali-
brated. This point is certainly more relevant for the present
paper. However it is worth noting that our visual system is
based on a retina-like sensor which ‘only’ acquires
2000 pixel images. Consequently, the pre-calibrated values
are consistent with the general idea that the initial situation
is characterized by reduced resolution. In other words, we
do not rely on accurate pre-calibrated measures—an initial
situation not far from that of a ‘newborn’. The third
constraint has been the use of angular positions instead of
‘force fields’ as control parameters to describe the head–eye
plant.

This constraint roughly resembles the difference that
exists between the use of an efference copy and a propio-
ceptive input variable. If fast motion were involved, this
might be crucial (i.e. the efference copy information could

be used to produce a sort of state prediction) but in our case
the use of either type of signals made no difference. The
propioceptive input though simplified the mapping.

Finally, even if our experiments were based on a non-
redundant manipulator, the extension to redundant systems
is feasible. A first approach would be to build synergies in
order to reduce the number of controllable degrees of free-
dom. In this case an additional constraint would be added at
the actuators level. With reference to our current set-up we
can imagine to have a planar 3 DOF robot arm controlled by
six elastic actuators arranged in push–pull pairs. At the
controller level we can always choose the connections�Iij �
so that we only have two independent degrees of freedom. In
this case the redundant arm would actually behave as a non-
redundant device. The learning procedure would, in this
case, be the same as described before.

Another possibility is to use the solution proposed by
(Gandolfo & Mussa-Ivaldi, 1993) who demonstrated that
even in the redundant case (excess of degrees of freedom)
the ‘force fields’ approach might behave adequately. In
particular, they showed that a Jacobian pseudo-inverse is
able to map basis fields from joint to Cartesian coordinates.
Their solution (see Mussa-Ivaldi & Hogan, 1991) is integ-
rable and provides the required additional condition for the
Jacobian inversion in terms of a corrective stiffness matrix.
In our case we can express the position of the point to be
reached (i.e. the fixation point) in Cartesian coordinates and
plan the control of the redundant robot arm as proposed by
(Mussa-Ivaldi & Hogan, 1991). However this solution
requires some form of calibration of the vision system.

As a general comparison with other biologically inspired
models one of the alternatives is the direct modeling
approach (see Jordan, 1996 for a review). In theory, the
direct modeling approach might be able to solve the same
problem. However it needs to be trained off-line and the
training set has to be generated prior to any actual control.
Suppose a direct modeling approach were applied to the
visuo-motor coordination task. As usual, the system has to
be provided with a training set. The question is how we can
generate it. The easier and most used strategy has been that
of uniformly sampling the robot control space, execute the
relative commands, observe the results and eventually
adjust the internal model. This is feasible though it is not
efficient.

First, in that case we need to know a priori the size and the
limits of the control space. Second, we have also to decide
which sampling strategy to adopt (uniform, space-variant).
Thus, the resolution is established prior to any actual use of
the system. Finally, adaptation is precluded to such a
system. Any modification during the control stage (such
as a change on a physical system parameter) would require
to switch the system into a new learning stage. Unfortu-
nately, this would also require to re-explore the whole
control space even if the change might affect only a part
of it. This is a major difference. Our schema is intrinsically
goal directed while the direct approach even for a single
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goal case would explore the entire control space. Perhaps,
this is not an issue for the simple 2D case considered here,
but it might be a problem when the number of dimensions is
increased. It is worth stressing that in our model, as well as
in others (for example see Kawato, Furukawa & Suzuki,
1987) control and training are two parallel processes.

Compared with the so-called bi-directonal theory (Miya-
moto et al., 1998) the method proposed here is simpler and
in some parts it does not involve complete forward and
inverse models. In Kawato’s model each level namely
control, planning, coordinate transformation is connected
through a forward and an inverse block to another one in
a hierarchical fashion. In our case, some of the feedback
signals are not present and some loop simplified. For
instance the trajectory generation stage in our model is
completely feed-forward but also a real visual feedback is
absent (i.e. we do not evaluate directly the error to correct
the behavior). This is not to say they would not be needed in
later stages of development. At the same time it is fair to say
that due to hardware limitations we were not able to test the
system in fast dynamic tasks, thus a proper comparison was
not possible in quantitative terms.

In conclusion we would like to stress again that the imple-
mented artificial system only simulates biological develop-
ment in a rather primitive fashion. Yet, it possesses a set of
features that we think are promising for designing autono-
mous robots that can act adaptively in a visually specified
environment. These features are as follows:

• The system is complete in the sense that specific sensory
and motor components develop simultaneously.

• The sight of the hand drives the learning of the motor–
motor map. In this respect, robot’s body generates
enough information to learn a map which guides the
reaching for an external object (target). We are not
saying that eye-hand coordination in humans is imple-
mented through a direct motor to motor mapping. This
remains a researchable question.

• The basal motor repertoire becomes part of the growing
motor–motor map without requiring the explicit inhibi-
tion of ‘innate’ motor reflexes. This is not to say that at
some later developmental state, inhibitory mechanisms
are not to be employed.

In light of the above features, a final note on the
distinction between learning and development is
warranted, in order to stress that our approach charac-
terizes a developmental rather than of a learning
process: during learning a defined relationship between
various sensory and motor subsystems constrains the kind
of tasks that can be learned. In contrast, development takes
place on a larger scale. It is not merely a series of discrete
learning experiences, but is characterized as a process where
the interrelationships between subsystems are not yet rigidly
defined. It is this lack of rigidly defining initial states, that
enable developing systems to adapt to a potentially larger
range of tasks.
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