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Vision and manipulation are inextricably intertwined in the primate brain. Tantalizing results from neu-
roscience are shedding light on the mixed motor and sensory representations used by the brain dur-

ing reaching, grasping, and object recognition. We now know a great deal about what happens in the
brain during these activities, but not necessarily why. Is the integration we see functionally important,

or just a reflection of evolution’s lack of enthusiasm for sharp modularity? We wish to instantiate these
results in robotic form to probe the technical advantages and to find any lacunae in existing models.
We believe it would be missing the point to investigate this on a platform where dextrous manipulation

and sophisticated machine vision are already implemented in their mature form, and instead follow a
developmental approach from simpler primitives. We begin with a precursor to manipulation, simple
poking and prodding, and show how it facilitates object segmentation, a long-standing problem in

machine vision. The robot can familiarize itself with the objects in its environment by acting upon
them. It can then recognize other actors (such as humans) in the environment through their effect on
the objects it has learned about. We argue that following causal chains of events out from the robot's

body into the environment allows for a very natural developmental progression of visual competence,
and we relate this idea to results in neuroscience.
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1 Vision, Action, and Development

Robots and animals are actors in their environment,
not simply passive bystanders. They have the oppor-
tunity to examine the world using causality, by
performing probing actions and learning from the
response. Tracing chains of causality from motor
action to perception (and back again) is important
both to understand how the brain deals with sensorim-
otor coordination and to implement those same func-
tions in an artificial system, such as a humanoid robot
(Sperber, Premack, & Premack, 1995). In this article,
we propose that such causal probing can be arranged
in a developmental sequence leading to a manipula-

tion-driven representation of objects. We present results
for many important steps along the way and describe
how they fit in a larger scale implementation. And we
discuss in what sense our artificial implementation is
substantially in agreement with neuroscience. 

Table 1 shows four levels of causal complexity
that we address in the article. The simplest causal
chain that an actor—whether robotic or biological—
may experience is the perception of its own actions.
The temporal aspect is immediate: Visual information
is tightly synchronized to motor commands. Once this
causal connection is established, we can go further
and use it to actively explore the boundaries of
objects. In this case, there is one more step in the
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causal chain, and the temporal nature of the response
may be delayed since initiating a reaching movement
does not immediately elicit consequences in the envi-
ronment. Finally we argue that extending this causal
chain further will allow the actor to make a connection
between its own actions and the actions of another.
This is reminiscent of what has been observed in the
response of the primate’s premotor cortex. 

Taken together these observations from neuro-
science suggest a critical role for motor action in per-
ception. Certainly vision and action are intertwined at
a very basic level. Although an experienced adult can
interpret visual scenes perfectly well without acting
upon them, linking action and perception seems cru-
cial to the developmental process that leads to that
competence. We can construct a working hypothesis:
that action is required for object recognition in cases
in which an agent has to develop categorization auton-
omously. Of course in standard supervised learning
action is not required since the trainer does the job of
presegmenting the data by hand. In an ecological con-
text, some other mechanism has to be provided. Ulti-
mately this mechanism is the body itself that through
action (under some suitable developmental rule) gen-
erates informative percepts. This notion is related to
the “toil versus theft” distinction used by Harnad
(2002). Harnad points out that although the meaning
of concepts must eventually be traced back to experi-
ence (“toil”), evolution and communication provide a
way to bypass this through genetic or social “theft.”

Human infants, for example, exhibit significant percep-
tual abilities before their motor skills have developed
fully. Nevertheless, they clearly “detect object proper-
ties with increasing specificity in relation to their own
emerging action capabilities” (Adolph, Eppler, & Gib-
son, 1993, p. 77). In our robotic experiments, we seek
to trace a causal path all the way from the perception
and exploitation of object affordances back to a very
minimal set of sensor and motor primitives. When
seeking analogues between this process and develop-
ment in humans or other primates, it is important to
bear in mind that some logically required steps may be
subsumed by the animal’s evolutionary legacy.

We can distinguish three main conceptual func-
tions in the developmental process that leads to object
representation [similar to the schema of Arbib et al.
(Arbib, 1981)]: reaching, grasping (manipulation),
and object recognition. These functions correspond to
the levels of causal understanding introduced in
Table 1. They also form an elegant progression of
abilities that emerge out of very few initial assump-
tions. All that is required is the interaction between
the actor and the environment, and a set of appropriate
developmental rules specifying what information is
retained during the interaction, the nature of the sen-
sory processing, the range of motor primitives, and so
forth. If we consider the actual localization of func-
tions in the brain we can observe a developmental
sequence roughly following a dorsal-to-ventral gradi-
ent. Unfortunately this is a question that has not yet

Table 1 Degrees of causal indirection, localization, and function in the brain. There is a natural trend from simpler to
more complicated tasks. The more time delayed an effect, the more difficult it is to model

Level Nature of causation Main path Function and/or behavior Time profile

1 Direct causal chain VC-VIP/7b-
F4-F1

Reaching Strict synchrony

2 One level of indirection VC-AIP-F5-
F1

Poking, prodding, 
grasping

Fast onset upon contact, 
potential for delayed 
effects

3 Complex causation 
involving multiple causal 
chains

VC-AIP-F5-
F1+STS+IT

Mirror neurons, mimicry Arbitrarily delayed 
onset and effects

4 Complex causation 
involving multiple 
instances of manipulative 
acts

STS+TE-
TEO+F5-
AIP(?)

Object recognition Arbitrarily delayed 
onset and effects
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been investigated in detail by neuroscientists, and
there is very little empirical support for this claim
[besides the work of Kovacs et al. (Kovacs, 2000)].

What is certainly true is that the three modules/func-
tions can be clearly identified. If our hypothesis is correct
then the first developmental step has to be that of trans-
porting the hand close to the object (which we numbered
Level 1 in our concise description in Table 1). In
humans, this function is accomplished mostly by the cir-
cuit VIP/7b-F4-F1 (see also Figure 2). Reaching requires
at least the detection of the object and hand, and the
transformation of their positions into appropriate motor
commands. Parietal neurons seem to be coding for the
spatial position of the object in nonretinotopic coordi-
nates by taking into account the position of the eyes
with respect to the head. According to Pouget and col-
leagues (Pouget, Ducom, Torri, & Bavelier, 2002) and
to Flanders and colleagues (Flanders, Daghestani, &
Berthoz, 1999) the gaze direction (the eye motor plant)
seems to be the privileged reference system used to
code reaching. Relating to the description of causality,
the link between an executed motor action and its vis-
ual consequences can be easily formed by a subsystem
that can detect causality in a short time frame (the
immediate aspect).

Once reaching is reliable enough, we can start to
move our attention outward onto objects (identified as
Level 2 in Table 1). Area AIP (parietal lobe) and F5
(frontal cortex) are involved in the control of grasping
and manipulation. F5 talks to the primary motor cor-
tex for the fine control of movement. The AIP-F5 sys-
tem responds to the “affordances” of the observed
object with respect to the current abilities (Gibson,
1977). Arbib and coworkers (Fagg and Arbib, 1998)
proposed the FARS model as a possible description of
the computation in AIP-F5. They did not, however,
consider how affordances can be actually learned dur-
ing interaction with the environment. Learning and
understanding affordances requires a slightly longer
time frame since the initiation of an action (motor
command) does not immediately elicit all relevant
sensory consequences. In this example, the initiation
of reaching requires a mechanism to detect when an
object is actually touched and manipulated, and whether
the collision/touch is causal to the initiation of the
movement.

The next step along this hypothetical develop-
mental route is to acquire the F5 mirror representation
(Gallese, Fadiga, Fogassi, & Rizzolatti, 1996). We

might think of AIP-F5 neurons as an association table
of grasp/manipulation (action) types with object
(vision) types. Mirror neurons can then be thought of
as a second-level associative map that links together
the observation of a manipulative action performed by
somebody else with the neural representation of one’s
own action. Mirror neurons bring us to an even higher
level of causal understanding (Level 3). In this case
the action execution has to be associated with a simi-
lar action executed by somebody else. The two events
do not need to be temporally close to each other. Arbi-
trary time delays might occur.

The conditions for when this is feasible are a con-
sequence of active manipulation. During a manipula-
tive act there are a number of additional constraints that
can be factored in to simplify perception/computation.
For example, detection of useful events is simplified by
information from touch, by timing information about
when reaching started, and from a knowledge of the
location of the object.

The last subsystem to develop is object recogni-
tion (Level 4). Object recognition can build on manip-
ulation in finding the boundaries of objects and
segmenting them from the background. More impor-
tantly, once the same object is manipulated many
times the brain can start learning about the criteria to
identify the object if it happens to see it again. These
functions are carried out by the infero-temporal cortex
(IT). The same considerations apply to the recognition
of the manipulator (either one’s own, or another’s). In
fact, the Superior Temporal Sulcus (STs) region is
specialized for this task. Information about object
identity is also sent to the parietal cortex and contrib-
utes to the formation of the affordances. However
object recognition is performed, at a minimum all
information (visual in this case) pertaining to a certain
object needs to be grouped during development so that
a model of the object can be constructed.

For the robotic implementation we endeavor to
follow the same developmental pathway and exploit
the same sort of causal links between actions and sen-
sory feedback. Also, we wish to instantiate these
results in robotic form to probe the technical advan-
tages and to find any lacunae in existing models.

We wished to keep the actions implemented on
our robotic system as simple as possible, to avoid
obscuring the core issue of development behind an
elaborately engineered dextrous system. We found
that simple poking gestures (prodding, tapping, swip-
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ing, batting, etc.) were rich enough to evoke object
affordances such as rolling. They also provided exactly
the kind of training data needed to bootstrap percep-
tion, since they facilitated “active segmentation,” where
the motion of the object generated by the robot served
to identify its boundaries.

2 Object or Illusion?

Following Manzotti and Coscienza (2001), we can ask
whether macroscopic objects exist completely in their
own right, or instead owe something of their existence
to their interaction with an observer. How the world is
divided up, and what parts of it we grant status as
objects, says as much about us as about the world
around us (Hendriks-Jansen, 1996). For example,
would a chair still be a chair if we had a completely
different embodiment? Further, even if a part of the
physical world could be separated out from the back-
ground in an objective manner, its function still
depends on our body and skills—for example, a
floppy disk is of little use to one who is computer illit-
erate and perhaps can be just regarded as a clumsy
frisbee or ugly drink coaster.

Consider the example in Figure 1. It is clear that
the cross on the left is a cross and does not seem to
owe its existence to us as observers. The array in the
middle for many of us is still a cross. This would still
be the case even if we had not developed the concept
of number or these particular graphic symbols to iden-
tify numbers. What can we say about the array on the
right? On a first examination it looks like a random
collection of numbers. But if we are told that the crite-

rion is “prime numbers versus non-prime” then a cross
can still be identified.

On the very right of Figure 1 we show a cube sit-
ting on the table. Whereas humans are very good in
analyzing scenes such as this one, there are many fea-
tures that can fool a computer vision system. The
edges of the cube and table happen to be aligned, the
color is poorly separated, and the surface pattern of
the cube does not really tell much about the object
itself. Is the internal dark square a different object
lying on top of the cube? Another possibility is that
the cube is extremely heavy or even part of the table
and thus it is not manipulable or movable. Does it
make sense then to speak about objects in images, as
if there were a unique correspondence between the
two? As early as 1734, Berkeley observed that

In these and the like instances the truth of the mat-
ter stands thus: having of a long time experienced
certain ideas, perceivable by touch, as distance,
tangible figure, and solidity, to have been con-
nected with certain ideas of sight, I do upon per-
ceiving these ideas of sight forthwith conclude
what tangible ideas are, by the wonted ordinary
course of Nature like to follow. (Berkeley, 1734/
1972, proposition 45)

He proposes that we get to know objects only by
touch, since vision is ambiguous, and that we create
visual representation only by multimodal association
of haptic and visual perception. Vision is indeed sub-
ject to many illusions. But touch also can be fooled
since it has been shown that vision and touch combine
optimally with respect to a maximum likelihood crite-

Figure 1 On the left are three examples of crosses, following Manzotti and Coscienza (2001). The human ability to
segment objects is not general purpose and improves with experience. On the right is an image of a cube on a table, il-
lustrating the ambiguities that plague machine vision. The edges of the table and cube happen to be aligned (dashed
line), the colors of the cube and table are not well separated, and the cube has a potentially confusing surface pattern.
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rion (Ernst & Banks, 2002). Which sensory modality
dominates depends on the experimental conditions
and apparently we should not always “blindly” trust
our senses. The key to resolving ambiguity is to take
action, rather than remain a passive observer. In the
remainder of this article we argue that in the presence
of manipulation—even a simple form of manipula-
tion—vision becomes more powerful and many of its
illusions fade away.

3 Objects and Action in Humans

The example of the cross composed of prime numbers
is a novel (albeit unlikely) type of segmentation in our
experience as adult humans. We might imagine that
when we were very young, we initially had to form a
set of such criteria to solve the object identification/
segmentation problem in more mundane circumstan-
ces. That such abilities develop and are not com-
pletely innate is suggested by results in neural science.
For example Kovacs (2000) has shown that perceptual
grouping is slow to develop and continues to improve
well beyond early childhood (14 years). Long-range
contour integration was tested and this work eluci-
dated how this ability develops to enable extended
spatial grouping.

A useful concept to understand how such capabil-
ities could develop is the well-known theory of
Ungerleider and Mishkin (1982) who first formulated
the hypothesis that the brain’s visual pathways split
into two main streams: the dorsal and the ventral. The
dorsal is the so-called “where” pathway, concerned
with the analysis of the spatial aspects of motor con-
trol. The ventral is related with the “what”, that is, the
identity of objects.

Milner and Goodale (1995) refined the theory by
proposing that objects are represented differently dur-
ing action than they are for a purely perceptual task.
The dorsal deals with the information required for
action, whereas the ventral is important for more cog-
nitive tasks such as maintaining an object’s identity
and constancy. Although the dorsal/ventral segrega-
tion is emphasized by many commentators, it is sig-
nificant that there is a great deal of cross talk between
the streams. Observation of agnosic patients (Jean-
nerod, 1997) shows a much more complicated rela-
tionship than the simple dorsal/ventral dichotomy
would suggest. For example, although some patients

could not grasp generic objects (e.g. cylinders), they
could correctly preshape the hand to grasp known
objects (e.g. a lipstick): Interpreted in terms of the two
pathways, this implies that the ventral representation
of the object can supply the dorsal stream with size
information.

Grossly simplifying, the brain circuitry responsi-
ble for object-oriented actions is thought to consist of
at least four interacting regions (Figure 2), namely, the
primary motor cortex (F1), the premotor cortex (F4,
F5), the inferior parietal lobule (AIP, VIP), and the
temporal cortex (TE, TEO) (see Rizzolatti, Fogassi, &
Gallese, 1997; Fadiga, Fogassi, Gallese, & Rizzolatti,
2000; Jeannerod, 1997, for a review). Although this is
a useful subdivision, it is worth bearing in mind that
the connectivity of the brain is much more complex,
that bidirectional connections are present, and that
behavior is the result of a population activity of these
areas. The example about the grasping of known
objects in agnosic patients testifies to the abundance
of anatomical connections between different regions
(Jeannerod, Arbib, Rizzolatti, & Sakata, 1995).

Figure 2 Monkey brain with indication of the main areas
participating in object-oriented actions (adapted from Fagg
and Arbib, 1998). As described in the text, three main func-
tions can be identified: object recognition, reaching, and
grasping. These form three parallel yet connected streams
of processing. The circuit connecting the visual cortex to
the inferior parietal lobule VIP, F4, and F1 is thought to
compute the visuomotor transformations required to con-
trol reaching. Some evidence also suggests a possible
role in the organization of reaching played by the posterior
parietal cortex PO and dorsal premotor area F2, reciprocal-
ly connected. AIP and F5 are responsible for grasping.
Temporal areas (TE, TEO) and STS are correlated to the
semantic of object recognition.



6 Adaptive Behavior 11(2)

Another way of looking at the same connectivity
is in terms of the main function of each area. For
example F4, VIP, and 7b are involved in the control of
reaching, F5 and AIP contain the majority of grasp
related neurons, and TE and TEO are thought to sub-
serve object recognition. These regions together form
a network of parallel and yet interacting processes. In
fact, at the behavioral level, it has been observed that
reaching and grasping need to interact to orient and
preshape the hand correctly (Jeannerod, et al., 1995).

Neurons responsive to reaching are present in the
inferior parietal lobule. For example, Jeannerod et al.
(1995) reported that the temporary inactivation of the
caudal part (VIP) of the intraparietal sulcus by inject-
ing a GABA agonist disrupts reaching. Conversely,
injection in the more rostral part (area AIP) interferes
with the preshaping of the hand. 

Some of the VIP neurons have bimodal visual and
somatic receptive fields (RF). About 30% of them have
an RF that does not vary with movement of the head
(Rizzolatti et al., 1997). The tactile and visual RF often
overlap (e.g. a central visual RF corresponds to a tactile
RF in the nose or mouth). The parietal cortex also
contains cells related to eye position/movements that
appear to be involved in the visuomotor transformation
required for reaching. VIP projects to area F4 in the
premotor cortex. Area F4 contains neurons that respond
to objects and are related to the description of the perip-
ersonal space with respect to reaching (Graziano, Hu,
& Gross, 1997; Fogassi et al., 1996). A subset of the F4
neurons have a somatosensory, visual, and motor recep-
tive field. The visual receptive field extends in three
dimensions from a given body part, such as the fore-
arm. The somatosensory RF is usually in register with
the visual one (as in VIP neurons). Motor information
is integrated into the representation by maintaining the
receptive field anchored to the correspondent body part
(the forearm in this example) irrespective of the relative
position of the head and arm.

Also, Graziano et al. (1997a), with monkeys,
described neurons that maintain a memory of the posi-
tion of objects for the purpose of reaching. They
found neurons that change their firing rate after an
object is illuminated briefly within reaching distance.
The neurons return to their baseline firing rate only
after the monkey is shown that the object has been
taken away or moved to a different position.

Sakata and coworkers (Sakata, Kusunoki, Taira,
Murata, & Tanaka, 1997) investigated the response of

neurons in the parietal cortex and in particular in area
AIP (anterior intra-parietal). They found cells res-
ponsive to complex visual stimuli. Neurons in AIP
responded during grasping/manipulative actions and
when an object was presented to the monkey but no
reaching was allowed. Neurons were classified as
motor dominant, visual dominant, or visuomotor type
depending on how they fired in the dark. Of the visual
dominant neurons, some responded to the presentation
of the object alone and often they were very specific
to the size and orientation of the object, others to the
type of object, whereas others responded indifferently
to the presentation of a broad class of objects. Area
AIP is interesting because it contains both motor and
visually responsive cells intermixed in various propor-
tions; it can be thought of as a visuomotor vocabulary
for controlling object-directed actions. It is also inter-
esting because projections from AIP terminate in the
agranular frontal cortex. For many years, because of
the paucity of data, this part of the cortex was consid-
ered a unitary motor control area. Recent studies (see
Jeannerod, 1997; Fadiga et al., 2000) have demon-
strated that this is not the case. Particularly surprising
was the discovery of visual responsive neurons. A
good proportion of them have both visual/sensory and
motor responses. Area F5, one of the main targets of
the projection from AIP (to which it sends back recur-
rent connections), was thoroughly investigated by
Rizzolatti and colleagues (Gallese et al., 1996).

F5 neurons can be classified in at least two differ-
ent categories: canonical and mirror. Canonical and
mirror neurons are indistinguishable from each other
on the basis of their motor responses; their visual
responses, however, are quite different. The canonical
type is active in two situations: (1) when grasping an
object and (2) when fixating that same object. For
example, a neuron active when grasping a ring also
fires when the monkey simply looks at the ring. This
could be thought of as a neural analogue of the
“affordances” of Gibson (1977). However, given the
heavy projection from AIP, it is not entirely true that
the affordances are fully described/computed by F5
alone. A more conservative stance is that the system
of AIP, F5, and other areas (such as TE) participate in
the visual processing and motor matching required to
compute the affordances of a given object. 

The second type of neuron identified in F5, the mir-
ror neuron (Fadiga et al., 2000), becomes active under
either of two conditions: (1) when manipulating an
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object (e.g. grasping it, as for canonical neurons), and (2)
when watching someone else performing the same
action on the same object. This is a more subtle repre-
sentation of objects, which allows and supports, at least
in theory, mimicry behaviors. In humans, area F5 is
thought to correspond to Broca’s area; there is an intrigu-
ing link between gesture understanding, language, imi-
tation, and mirror neurons (Rizzolatti and Arbib, 1998).

The STS region and parts of TE contain neurons
that are similar in response to mirror neurons (Perrett,
Mistlin, Harries, & Chitty, 1990). They respond to the
sight of the hand; the main difference compared to F5
is that they lack the motor response. It is likely that
they participate in the processing of the visual infor-
mation and then communicate with F5 (Gallese et al.,
1996), most likely via the parietal cortex.

A possible developmental explanation of the acqui-
sition of these functions can be framed in terms of trac-
ing/interpreting chains of causally related events. The
ability to probe longer chains triggers the emergence of
new functionality and/or a new set of behaviors. The
next sections delves deeper into this proposal for the
ontogenesis of object-oriented action and provides
experimental results of many steps toward this goal.

4 The Experimental Platform

This work is implemented on the robot Cog (Figure 3),
an upper-torso humanoid (Brooks, Breazeal, Mar-
janović, Scassellati, & Williamson, 1999; Adams,
Breazeal, Brooks, & Scassellati, 2000). The robot has
previously been applied to tasks such as visually-
guided pointing (Marjanović, Scassellati, & William-
son, 1996), and rhythmic operations such as turning a
crank or driving a slinky (Williamson, 1998). Cog has
two arms, each of which has six degrees of freedom—
two per shoulder, elbow, and wrist. The joints are
driven by series of elastic actuators (Williamson,
1995)—essentially a motor connected to its load via a
spring (think strong and torsional rather than loosely
coiled). The arm is not designed to enact trajectories
with high fidelity. For that a very stiff arm is preferable.
Rather, it is designed to perform well when interacting
with a poorly characterized environment, where colli-
sions are frequent and informative events.

The following Sections 5–9 explore the four lev-
els of causation that are at the core of our working
hypothesis. The rationale of the experiments is to

show that one possible route to object recognition
goes through the “understanding” of longer chains of
cause–effects relationships. In particular Section 5
describes the simplest causal chain where motion of
the robot causes immediate visual effects. Simple
cross-correlation over time of motor and visual signals
allows localizing the robot’s end point. Reaching is seen
as an extension of the same mechanism. Subsequently,
we show in Section 6 how the robot explores its periper-
sonal space and get to explore physical objects. Exploit-
ing causality leads to object segmentation (figure/
ground separation). In this case there is a potentially
delayed effect because initiating the reaching action
does not automatically lead to the interaction with the
object. The experiments described in Sections 7 and 8
build on the segmentation to learn object affordances.
Exploring further a complex causal chain where the
actions of others are considered moves us naturally to a
“mirror neuron”-like response. Object recognition and
an empirical definition of “objecthood” are presented
in Section 9. Our definition relies on a combination of
object affordances and the acquisition of data through
multiple instances of the same manipulative act.

5 Perceiving Direct Effects of Action

Motion of the arm may generate optic flow directly
through the changing projection of the arm itself, or

Figure 3 The robot Cog, an upper-torso humanoid. The
ultimate goal of this work is for our robot to follow chains
of causation outward from its own simple body into the
complex world. Such an incremental process suggests
that perception and action develop together, supporting
each other. The head, torso, and arms together contain
22 degrees of freedom.
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indirectly through an object with which the arm is in
contact. Although the relationship between the optic
flow and the physical motion is likely to be extremely
complex, the correlation in time of the two events will
generally be exceedingly precise. This time correla-
tion can be used as a “signature” to identify parts of
the scene that are being influenced by the robot’s
motion, even in the presence of other distracting
motion sources. In this section, we show how this
tight correlation can be used to localize the arm in the
image without any prior information about visual
appearance. This is in fact why we chose to detect the
arm using optic flow rather than by searching for a
predetermined color or shape. In the next section we
will show that once the arm has been localized we can
go further and identify the boundaries of objects with
which the arm comes into contact.

A similar procedure was described by Piaget
(1963) as “circular reaction.” In Piaget’s observations
the circular reaction is the mechanism by which the
loop between vision and action is closed. In the child,
this seemingly random activity mediates the discovery
of contingent activation of visual, motor, and somato-
sensory areas. Other researchers (Bullock, Gross-
berg, & Guenther, 1993) applied a similar model in
learning visuomotor transformations. The “motor
babbling” activity was used to self-train the sensori-
motor transformations required for reaching. We
instantiate here a similar mechanism to learn to local-
ize the robot effector. 

5.1 Reaching Out

The first step toward manipulation is to reach objects
within the workspace. If we assume targets are chosen
visually, then ideally we need to also locate the end
effector visually to generate an error signal for closed-
loop control. Some element of open-loop control is
necessary since the end point may not always be in the
field of view (e.g. when it is in its resting position),
and the overall reaching operation can be made faster
with a feed-forward contribution to the control.

The simplest possible open-loop control would
map directly from a fixation point to the arm motor
commands needed to reach that point (Metta, Sandini,
& Konczak, 1999) using a stereotyped trajectory, per-
haps using postural primitives (Mussa-Ivaldi & Gisz-
ter, 1992). If we can fixate the end effector, then it is
possible to learn this map by exploring different com-

binations of direction of gaze versus arm position
(Marjanović et al., 1996; Metta et al., 1999). So locat-
ing the end effector visually is key both to closed-loop
control and to training up a feed-forward path. We
shall demonstrate that this localization can be per-
formed without knowledge of the arm’s appearance,
and without assuming that the arm is the only moving
object in the scene.

5.2 Localizing the Arm Visually

The robot is not a passive observer of its arm, but
rather the initiator of its movement. This can be used
to distinguish the arm from parts of the environment
that are more weakly affected by the robot. The arm of
a robot was detected in Marjanović et al. (1996) by
simply waving it and assuming it was the only moving
object in the scene. We take a similar approach here
but use a more stringent test of looking for optic flow
that is correlated with the motor commands to the
arm. This allows unrelated movement to be ignored.
Even if a capricious engineer were to replace the
robot’s arm with one of a very different appearance,
and then stand around waving the old arm, this detec-
tion method will not be fooled. 

The actual relationship between arm movements
and the optic flow they generate is complex. Since the
robot is in control of the arm, it can choose to move it
in a way that bypasses this complexity. In particular, if
the arm rapidly reverses direction, the optic flow at
that instant will change in sign, giving a tight, clean
temporal correlation. Since our optic flow processing
is coarse (computed by a generic correlation-based
approach over a 16 × 16 grid over a 128 × 128 image
at 15 Hz), we simply repeat this reversal a number of
times to get a strong correlation signal during training.
With each reversal the probability of correlating with
unrelated motion in the environment goes down. This
probability could also be reduced by higher resolution
(particularly in time) visual processing.

Figure 4 shows an example of this procedure in
operation, comparing the velocity of the arm’s wrist
with the optic flow at two positions in the image
plane. A trace taken from a position away from the
arm shows no correlation, whereas conversely the
flow at a position on the wrist is strongly different
from zero over the same period of time. Figure 4
shows examples of detection of the arm and rejection
of a distractor.
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5.3 Localizing the Arm Using Proprioception

The localization method for the arm described so far
relies on a relatively long “signature” movement that
would slow down reaching. This can be overcome by

training up a function to estimate the location of the
arm in the image plane from proprioceptive informa-
tion (joint angles) during an exploratory phase, and
using that to constrain arm localization during actual
operation.

The response of such a filter is not too distant
from that of the monkey’s parietal and frontal cortices.
In particular we already described, in Section 3, neu-
rons that respond to the sight of a body part (e.g. the
hand) irrespective of the relative position of the eyes,
head, and arms.

As a function approximator we simply fill a look-up
table, implemented as a list of nodes allocated dynami-
cally. This implementation was chosen to reduce mem-
ory consumption; the input space is six dimensional and
even a coarse discretization of this space would require
memory in the order of several Mbytes. Rather than
using all the joint angles the current direction of gaze is
first coded in terms of only two angles representing the
global pan (θ) and tilt (φ) of one of the cameras. This is
easily computed from the kinematics of the head and the
joint angles. The end-point position is coded consider-
ing only the first four joints (q1 … q4). The positions of
joints q5 and q6 are not employed because the wrist does
not significantly contribute to the end-point position.
The output of the approximator is the position of the end
point (the forearm) on the image plane. Figure 5 shows
the resulting behavior after about 20 min of real-time
learning. 

Figure 4 (a) An example of the correlation between op-
tic flow and arm movement. The traces show the move-
ment of the wrist joint (upper plot) and optic flow sampled
on the arm (middle plot) and away from it (lower plot). (b)
The robot’s point of view and the optic flow generated are
shown on the left. On the right are the results of correla-
tion. Large circles represent the results of applying a re-
gion growing procedure to the optic flow. The small circle
marks the point of maximum correlation, identifying the
regions that correspond to the robot’s own arm.

Figure 5 Predicting the location of the arm in the image as the head and arm change position. The rectangle repre-
sents the predicted position of the arm using the map learned during a 20-min training run. The predicted position just
needs to be sufficiently accurate to initialize a visual search for the exact position of the end effector.
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5.4 Reaching for the Object

Reaching is implemented as a direct mapping between
the direction of gaze (θ, φ) and the command required
to reach the fixation point. Inspiration is drawn from
the experiments of Flanders et al. (1999) and Pouget
et al. (2002) that have shown that both humans and
monkeys employ gazing as a reference for reaching.
This procedure is consistent because we are interested
in reaching a point on a plane in front of the robot (a
table): that is, each point on the table is identified by
one and only one gaze value. The resulting map is
thus 2D → 6D (the arm has six degrees of freedom).
The same argument could be extended to the three-
dimensional case by augmenting the encoding of gaze
with, for example, the vergence angle. The arm motor
commands are represented in terms of joint positions,
and the mapping is linear:

(1)

where  are the desired joint positions. The coeffi-
cients anm are estimated following a brief calibration
procedure from a small number of training pairs of the
form ( , (θ, φ)). The linear approximation is justified
in our case because of the relatively small region of
the workspace where the reaching is expected to oper-
ate. The complete robot workspace is much bigger
because the torso can also move to keep the opera-
tional point of the linear approximation within reasona-
ble limits.

Redundancy is not an issue since the vector of
joint angles  spans only a two-dimensional subspace
of the full six-dimensional space. This subspace is
determined by the anm and it is uniquely indexed by
the input vector (θ, φ). Hence the mapping allows the
robot to reach a point on a particular plane in space
consistently. We verified this to be true empirically for
a large number of configurations.

At a lower level a low-stiffness position control
and a simple trajectory generator interpolate the
motion of the arm from the current position to the
commanded one. Gravity compensation for the shoul-
der joint has been implemented to improve accuracy
further.

6 Perceiving Indirect Effects of Action

We have assumed that the target of a reaching opera-
tion is chosen visually. As discussed in the Introduc-
tion, visual segmentation is not easy, so we should not
expect a target selected in this way to be correctly seg-
mented. For the example scene in Figure 1 (a cube sit-
ting on a table), the small inner square on the cube’s
surface pattern might be selected as a target. The robot
can certainly reach toward this target, but grasping it
would prove difficult without a correct estimate of the
object’s physical extent. In this section, we develop a
procedure for refining the segmentation using the
same idea of correlated motion used earlier to detect
the arm.

When the arm enters into contact with an object,
one of several outcomes is possible. If the object is
large, heavy, or otherwise unyielding, motion of the
arm may simply be resisted without any visible effect.
Such objects can simply be ignored, since the robot
will not be able to manipulate them. But if the object
is smaller, it is likely to move a little in response to the
nudge of the arm. This movement will be temporally
correlated with the time of impact and will be con-
nected spatially to the end effector—constraints that
are not available in passive scenarios (Birchfield,
1999). If the object is reasonably rigid, and the move-
ment has some component in parallel to the image
plane, the result is likely to be a flow field whose
extent coincides with the physical boundaries of the
object.

Figure 6 shows how a “poking” movement can be
used to refine a target. During a poke operation, the
arm begins by extending outward from the resting
position. The end effector (or “flipper”) is localized as
the arm sweeps rapidly outward, using the heuristic
that it lies at the highest point of the region of optic
flow swept out by the arm in the image (the head ori-
entation and reaching trajectory are controlled so that
this is true). The arm is driven outward into the neigh-
borhood of the target that we wish to define, stopping
if an unexpected obstruction is reached. If no obstruc-
tion is met, the flipper makes a gentle sweep of the
area around the target. This minimizes the opportunity
for the motion of the arm itself to cause confusion; the
motion of the flipper is bounded around the end point
whose location we know from tracking during the
extension phase and can be subtracted easily. Flow not
connected to the end effector can be ignored as a distrac-
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tor. For simplicity, the head is kept steady throughout
the poking operation, so that simple image differencing
can be used to detect the presence of motion at a higher
resolution than optic flow. Figure 7 shows an example
of the kind of results that are possible (see Section 9
for further examples).

The poking operation gives clear results for a rigid
object that is free to move. What happens for nonrigid
objects and objects that are attached to other objects?
Here the results of poking are likely to be more compli-
cated to interpret—but in a sense this is a good sign,
since it is in just such cases that the idea of an object
becomes less well defined. Poking has the potential to

offer an operational theory of objecthood that is more
tractable than a vision-only approach might give, and
which cleaves better to the true nature of physical
assemblages. The idea of a physical object is rarely
completely coherent, since it depends on where you
draw its boundary and that may well be task dependent.
Poking allows us to determine the boundary around a
mass that moves together when disturbed, which is
exactly what we need to know for manipulation. As an
operational definition of object, this has the attractive
property of breaking down into ambiguity in the right
circumstances—such as for large interconnected messes,
floppy formless ones, liquids, and so on.

Figure 6 The upper sequence shows an arm extending into a workspace, tapping an object, and retracting. This is an
exploratory mechanism for finding the boundaries of objects and essentially requires the arm to collide with objects un-
der normal operation, rather than as an occasional accident. The lower sequence shows the shape identified from the
tap using simple image differencing and flipper tracking.

Figure 7 An example of the power of active segmentation. The images marked “scene” show two presentations of a
yellow toy car sitting on a yellow table. The robot extends its arm across the table. In the upper sequence it strikes from
below; in the lower sequence it strikes from the side (“action” images). Once the arm comes in contact with the car, it be-
gins to move, and it can be segmented from the stationary background (“object”). On the left of the figure, a magnified
view of the car/table boundary is shown—the difference between the two is very subtle.
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7 Experimenting with Object 
Affordances

Poking moves us one step outward on a causal chain
away from the robot and into the world and gives a
simple experimental procedure for segmenting objects.
There are many possible elaborations of this method,
all of which lead to a vision system that is tuned to
acquiring data about an object by seeing it manipu-
lated by the robot. 

This kind of active segmentation will nevertheless
be inconvenient in many situations if not coupled with
a mechanism to learn from experience. For example, it
would be terribly inefficient always to have to poke an
object first before it could be grasped. It would be
much better if the robot could learn about objects and,
in particular, how to identify a previously encountered
object. A further difficulty, at least for a robot with a
simple manipulator (such as Cog’s flipper), is that
affordances are scarce: Most of the time the object
will simply move from one position to another if we
are willing to discount when it falls from the table.

However, for objects that roll there is a cue the
robot can exploit to understand their behavior. An
object that rolls tends to do so even if it is not poked
precisely. We selected a small set of objects to experi-
ment with: a cube, a toy car, an orange juice bottle,
and a ball. Affordances are not only a property of the
mechanics of the object, but rather a combination of
visual appearance, the object’s physical composition,
and the ability of the actor. We selected a measure of
the principal axis of the object (easily obtained from
the segmentation) as a visual component of the
affordance. Table 2 shows the expected behavior.

We need to group the data belonging to the same
object obtained across many poking acts into coherent

clusters. We adopted simple color histogram similarity
as our clustering criterion. After each poking action, a
color histogram of the pixels in the segmented region is
built and used to judge whether the object belongs to an
existing group (e.g. if it is mostly yellow, it is likely to
be the toy car). This works well for a small set of objects
but more sophisticated methods would be required for
a more general case with a large set of objects (Schiele
& Crowley, 2000). The data structure that simulates
the AIP-F5 affordance computation maintains all the
instances of poking grouped by object, all the proto-
types of the segmented object, the direction of move-
ment, and the action applied by the robot in each trial.

An alternative to the vision-based clustering pro-
cedure would be to try to classify the behavior of an
object after a single encounter and to use the behavior
itself as a clustering criterion. So how an object rolls
could be used as a feature to recognize that object.
Adopting this strategy would have made our results
much more sensitive to the performance of the motor
and vision system, since we cannot average over the
noise they generate. Nevertheless, this would be a per-
fectly reasonable strategy for a next-generation sys-
tem to adopt.

Figure 8 shows the results of the segmentation,
clustering, and estimation of the affordance of the
same set of four objects. The training set consists of
about 100 actions per object. The motor vocabulary of
the robot consists of four possible directions of pok-
ing. We labeled them for convenience as pull in, side
tap, push away, and back slap, depending on the effect
they have on the object from the point of view of the
robot. Actions were generated at random during this
training stage. During a poking action, the object is
tracked for 12 frames after the time of contact and the
overall displacement is computed. 

Table 2 Behavior of a small set of objects when poked at random by the robot manipulator

Object
Angle between principal axis and
preferred direction of rolling

Behavior

Cube n.a. No principal axis, does not roll

Car 0° Rolls along the principal axis

Bottle 90° Rolls at right angle

Ball n.a. No principal axis, does roll
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This description of the affordances shows clear
differences between the objects. But it is not yet an
effective description since it does not by itself tell the
robot how to take action once an object is observed.
For this purpose a description of the geometry of pok-
ing is required. This information can be derived from
the same training set we collected for learning about
rolling. Figure 9 shows the histograms of the direction
of movement averaged over all objects for each possi-
ble action. For example, the back slap moves an object
mostly upward (about –100° on average, 0° being the
direction parallel to the image x axis) and away from
the robot. A similar consideration applies to the other
poking gestures. Figure 9 was obtained from the data
of about 500 poking events.

The last step is to connect all these elements
together. If a known object is presented to Cog, the
object is recognized, localized, and its orientation esti-
mated (by finding its principal axis). Recognition is
based on the color histograms. The same procedure
used to form the clusters is employed here. Localiza-
tion is simply implemented by histogram back-projec-

tion and a search across the image. The current
orientation of the object is then estimated by compar-
ing the current image with all the prototypes contained
in the cluster. The whole procedure has an error on the
estimation of the principal axis in the range of 10–25°
depending on the object.

To exploit the understanding of the affordance we
need to connect vision to behavior. The robot looks
for the preferred rolling direction of the object (see
Figure 8) and adds it to its current orientation. The
action whose effects are closer (on average) to the
combination of the orientation and affordance is
selected.

We performed a simple qualitative test of the
robot’s behavior presenting randomly two of the
objects (the toy car and the bottle)—note that the ball
and the cube do not have a well-defined principal axis
so there is no point in running the experiment. Out of
100 trials the robot made 15 mistakes. Analysis of the
errors reveals that they are mainly due to imprecise
control (12) and to a lesser extent misinterpretation of
the orientation of the object (3).

Figure 8 Probability of observing a roll along a particular direction for the set of four objects used in our experiments.
Abscissas represent the difference between the principal axis of the object and the observed direction of movement. Or-
dinates are the estimated probability.
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8 Developing Mirror Neurons

An interesting question then is whether the system
could extract useful information from seeing an object
manipulated by someone else. In the case of poking, the
robot needs to be able to estimate the moment of con-
tact and to track the arm sufficiently well to distinguish
it from the object being poked. We are interested in
how the robot might learn to do this. One approach is to
chain outward from an object the robot has poked. If
someone else moves the object, we can reverse the
logic used in poking—where the motion of the manipu-
lator identified the object—and identify a foreign mani-
pulator through its effect on the object. The next
experiment was designed to explore this aspect.

In fact, the same processing used for analyzing an
active poking can be used to detect a contact and seg-
ment the object from the manipulator. This is not dif-
ferent from what we used for learning. Although one
might argue then that learning can be carried out just
by mere observation, it is worth noting that: (1) this
situation is not as well defined as the active one, and
(2) there is no connection to the motor aspects of the
action and consequently it is difficult to link the obser-
vation to the behavior. There is no physical contact,

thus there is plenty of room for getting confused by
false positives. The temporal aspect, so well con-
strained during active manipulation, is more vague
here—the robot, for example, does not know when the
foreign manipulator starts or stops the action. If miss-
ing a contact event or getting a false or mistaken seg-
mentation is not much of a problem in “observation
mode,” it is much more troublesome is we corrupt the
training data with unreliable/noisy observations. Fur-
ther, we should not assume the human “teacher” is
truly collaborative. There is no guarantee that actions
suited to the robot perceptual system and/or goal are
performed at all. More seriously, the link to behavior
is completely missing. Even if visual information
about objects can be collected as before, tracing back
which action causes a particular consequence cannot
be autonomously learned by the robot. Conversely, in
the case of the robot having already learned about
objects, as, for example, we have shown in the previ-
ous section, this information can be factored in to help
the observation of somebody else’s action. Touch (in
Cog) and physical contact are additional bits of infor-
mation about the ongoing activity.

In our case, if any activity is detected close to the
object—measured by the amount of motion in a

Figure 9 Histogram of the direction of movement of object for each possible poking action. For each of the four plots
the abscissa is the direction of motion of the object where the 0° direction is parallel to the x axis, and –90° to the y axis.
The ordinate is the empirical probability distribution of the direction of motion of the objects.
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neighborhood of the fixation point corresponding to
the robot’s foveal camera—reaching is inhibited and
the whole action observed (assuming there is one at
all). An example of human poking is shown in
Figure 10.

The first obvious thing the robot can do is to iden-
tify the action just observed with respect to its motor
vocabulary. It is easily done, in this case, by compar-
ing the displacement of the object with the four possi-
ble actions and by choosing the action whose effects
are closer to the observed displacement. Indeed it
allows—even in this limited setting—recognizing a
complex action by interpreting its consequences on
the environment. This is orders of magnitude simpler
than trying to characterize the action completely in
terms of the observed kinematics of the movement.
Here, the complexity of the data we need to obtain
from the observations is somehow proportional to the
complexity of the goal rather than that of the structure/
skills of the foreign manipulator. In our case, because
the action, the goal, and the object are relatively sim-
ple, the only information required is about the dis-
placement of the object.

Therefore, the next question is whether we can
use this “understanding” of observed actions to
implement mimicry behavior. It would be easy now
to try to replicate the action just observed if the same
object were presented again. However, there is still a
bit of ambiguity in that we can choose to mimic
either the observed displacement of the object or the
way the object was poked with respect to its rolling
affordance.

We chose to implement the latter. It is clear that
poking along a particular observed direction requires
trivial modifications. In practice, after an action is
observed the angle between the affordance (see
Table 2) and the actual displacement is measured and
stored. If it happens to see the same object again, the
robot chooses the action that has the greatest proba-
bility of poking the object along the previously stored
angle. Figures 10 and 11 show examples of such mim-
icry.

This response is exactly what we would expect
from a “mirror-type” representation. The observed
action is interpreted on the basis of the robots own
motor code. The same data structure is also used/acti-

Figure 10 Basic mimicry. The first step in mimicking an action is to be able to observe it. The first sequence shows a
human demonstration of a poking operation. Frames around the moment of contact are shown. The object, after seg-
mentation, is tracked for 12 frames using a combination of template matching and optic flow. The big circles represent
the tracked position of the bottle in successive frames. The arrow displayed on the frame of contact (third from the left)
projects from the position at the time of contact and at the 12th frame, respectively. In the second sequence, the bottle is
presented to the robot in the same orientation it had in the demonstrated action and the robot repeats the observed ac-
tion, a “side tap.” In the third sequence, the bottle is presented at a different angle. The appropriate action to exploit the
affordance and make the bottle roll is now a “back slap.”
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vated when performing an action in response to the
sight of a known object. The causal link between the
two events that could be separated by several sec-
onds comprises the object, the goal, and the object’s
affordances. There is considerable precedent in the
literature for a strong connection between viewing
object manipulation performed by oneself and the
same manipulative act performed by another (Wohl-
schläger & Bekkering, 2002). There is also growing
evidence that imitation is goal directed (Bekkering &
Wohlschläger, 2000) and that the object of the action
is explicitly coded (e.g. during reaching; Woodward,
1998).

9 Toward Object Recognition

Although poking is a very crude and primitive form of
manipulation we have shown that it can help to boot-
strap more complex behaviors without relying on an
external teacher. With only minimal assumptions
(using motion as segmentation cue) we were able to
build a system that exploits its environment to learn
novel behaviors. If Cog had a dextrous hand, it could
further exploit temporal constraints (e.g. an object
remains the same unless it is dropped) to collect
tightly/temporally correlated data. There are already
examples in robotics of the acquisition of object cate-

Figure 11 An extended mimicry example using the toy car. The sequences on the left show the robot mimicking a hu-
man exploiting the car’s rolling affordance. The sequences on the right show what happens when the human hits the car
in a contrary fashion, going against its preferred direction of motion. The robot mimics this “unnatural” action, suppress-
ing its usual behavior of trying to evoke rolling.

Figure 12 Once objects have been segmented from the
background, they are much easier to distinguish from
each other since the irrelevant similarity of their shared
environment is eliminated. To build object models, the ro-
bot clusters all the segmented views it receives based on
similarity of their color histogram. This figure shows sam-
ples from four of the clusters found, corresponding to the
four objects used in Section 7. Note the baseball cap
classified with the ball, lower right—a young child wan-
dered by the robot while we were collecting data and got
it to poke his cap.
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gorization based on this kind of temporally correlated
information (Scheier & Lambrinos, 1996). This form
of “object constancy” could be exploited, for instance,
to learn about an object with confusing visual features
such as many different colors, different geometric pat-
terns, and so forth (see the example of the object clus-
ters in Figure 12 and the cube in Figure 13). A finer
form of manipulation can be used also to group
objects on the basis of their behavior rather than
purely by visual appearance: e.g. the class of “bottle”
or of “toy cars.” This, in some future implementation,
can help the robot to attain a goal by using a suitable
tool (among many) rather than exactly the same tool it
used when it initially learned the task.

A possible and obvious extension is to use the
object segmentation provided by poking (and manipu-
lation in general) to build models of the appearance of
objects beyond the color histogram we used in our
experiments (think again about the cube shown in
Figure 13). Also in this case the robot could work
autonomously on learning. Furthermore, the interac-
tion between manipulator and object provides another
element that can be used to learn about the manipula-
tor itself (see Figure 14). The robot can then learn
about the appearance of its own hand or, equally,
about the human hand. It is remarkable that the com-

plexity of the robot manipulator does not necessarily
have to match that of the human manipulator. We can
envision a similar procedure to learn about any object
that functions as manipulator.

10 Discussion and Conclusions

In this article, we showed how causality can be probed
at different levels by the robot. Initially the environ-
ment was the body of the robot itself, then later a care-
fully circumscribed interaction with the outside world.
This is reminiscent of Piaget’s distinction between pri-
mary and secondary circular reactions (Ginsburg &
Opper, 1978). Objects are central to interacting with
the outside world. We raised the issue of how an agent
can autonomously acquire a working definition of
objects. 

In computer vision there is much to be gained by
bringing a manipulator into the equation. Many vari-
ants and extensions to the experimental “poking”
strategy explored here are possible. For example, a
robot might try to move an arm around behind the
object. As the arm moves behind the object, it reveals
its occluding boundary. This is a precursor to visually
extracting shape information while actually manipu-
lating an object, which is more complex since the
object is also being moved and partially occluded by
the manipulator. Another possible strategy that could
be adopted as a last resort for a confusing object might
be simply to hit it firmly, in the hopes of moving it
some distance and potentially overcoming local, acci-
dental visual ambiguity. Obviously this strategy can-
not always be used! But there is plenty of room to be
creative here. There are also limitations in our current

Figure 13 Poking also gives the robot the opportunity to
collect many views of a single object, and so we can hope
to deal with recognizing objects like this toy cube that has
a different appearance from every side (the segmenta-
tions shown here were collected automatically).

Figure 14 Early experiments on segmenting the robot arm, or a human hand
poking an object the robot is familiar with, by working backward from a collision
event.
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implementation that could usefully be addressed. The
robot itself is not mobile, so its workspace is limited.
There are also many constraints on the arm that make
fine motor control impossible—it cannot maintain all
reachable poses indefinitely, and there is significant
noise and some hysteresis in its analog sensors. The
robot will only attempt to reach toward a target that is
actually accessible to its arm—not too close, not too
far, as determined using visual disparity. In practice,
this means that the ideal workspace is a table in front
of the robot, and the motor control of the robot has
been specifically tuned to work well in that situation.
A simple attention system and tracking mechanism
are used to bring the robot’s attention to a target. This
phase can fail if the robot gets distracted by some
more salient (but unreachable) part of the scene.
Objects that move together are not individually seg-
mented. And segmentation does not always succeed,
due to shadows, or strong nearby edges.

In spite of some limitations, the robotic experiments
support the view that reaching, grasping, and recogni-
tion can be learned by following a particular ontogenetic
pathway without the intervention of an external teacher.
This pathway is consistent with and inspired by what is
known of this process in biological systems (primates/
mammals). We have endeavored to build from as few
innate components as possible, to elucidate the visual
and motor challenges faced by a learning robot rather
than simply solving them by fiat. Although newborns
show amazing abilities (Spelke, 2000) such as early imi-
tation (Meltzoff & Moore, 1977), face detection and so
forth there is also evidence that the maturation of the
brain is far from complete at birth and complex percep-
tual abilities require a long time to emerge (Kovacs,
2000). We have given a simple existence proof that
object segmentation, recognition, and localization can
develop without any prior knowledge of visual appear-
ance. We have also shown that, without any prior
knowledge of the human form, the robot can identify
episodes when a human is manipulating objects that are
familiar to the robot purely by the operational similarity
of the human arm and its own manipulator in this situa-
tion. We believe such demonstrations are important both
in their own right, and in their elucidation of a concrete
series of steps that lead to a desired behavior. 

Many researchers have shown now examples of
the application of developmental principles in the
design of autonomous systems, for example, Weng
and colleagues (Weng et al., 2000; Weng, 2002) and

Metta et al. (1999). This approach may provide novel
directions to robotics. Besides, it may also serve as a
useful reference point from which to investigate the
biological solution to the same problem—although it
cannot provide the answers, it can at least suggest use-
ful questions.
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