
The vast range of human abilities and
behaviour illustrated here, as well as the
gift of remembering the multitude of

sensations associated with an instant of joy
many decades ago, offer us a glimpse of the
awesome repertoire of tasks that the human
brain can accomplish. Through mechanisms
that still elude our comprehension, the 
electrical activity of millions of brain cells
(neurons) can be translated into precise
sequences of skilled movements. Coordinat-
ed neuronal activity also provides us with
exquisite perceptual and sensorimotor capa-
bilities, illustrated in this example by Pelé’s
ability to track the ball’s trajectory and plan
the timing of his jump to hit it head on. 
But this is not all. Highly distributed patterns
of neuronal firing underlie our ability to 
generate expectations about the outcome of a
future event, learn the complex laws of nature
and create art. One could argue, therefore,
that hidden within the intricate principles
that govern the way brain circuits operate lies
the key to understanding the very essence of
what it is to be human. 

Witnessing the relentless growth of 
the disciplines that define modern neuro-
science, one cannot help wondering what
kind of insights, clinical applications and
technologies may emerge from brain
research in the future, and, more important,
how they will impact on our lives. Although
many of the imagined possibilities may not
be feasible at this time, recent work indicates
that some current ideas will come to fruition
in the not-so-distant future. Here, I focus 
on one of these — the development of 
direct interfaces between machines and 
the human brain.
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Brain–machine interfaces
I propose that the introduction of new meth-
ods for measuring large-scale brain activity,
new techniques for microstimulating 
neuronal tissue, and emerging developments
in microchip design, computer science and
robotics have the potential to coalesce into a
new technology devoted to creating inter-
faces between the human brain and artificial
devices. One day, it is conceivable that such
technology could allow patients to use brain
activity to control electronic, mechanical or
even virtual devices, leading to new 
therapeutic alternatives for restoring lost 
sensory, motor and even cognitive functions.
Although many fundamental neurobiological
questions and technical difficulties need to be
solved, we can be optimistic about the feasibili-
ty of implementing this concept in the next few
decades. Indeed, one brain–machine interface
— the auditory prosthesis known as the
cochlear implant — was introduced years ago
and has improved the quality of life of many
deaf patients1,2 (see Box 1). 

Neuroscientists have long relished the
possibility of using brain signals to control
artificial devices3. As a consequence, there
are already many terms in the literature4 to
describe devices that could accomplish this
goal (for example, brain-actuated technolo-
gy, neuroprostheses or neurorobots). Here I
will refer to these devices collectively as
‘hybrid brain–machine interfaces (HBMIs)’.
The word ‘hybrid’ reflects the fact that these
applications rely on continuous interactions
between living brain tissue and artificial
electronic or mechanical devices.

My definition of HBMIs incorporates two
main types of application. Type 1 devices use

artificially generated electrical signals to
stimulate brain tissue in order to transmit
some particular type of sensory information
or to mimic a particular neurological func-
tion. The classic example of this application is
an auditory prosthesis. Future applications
aimed at restoring other sensory functions,
such as vision, by microstimulation of specif-
ic brain areas would also belong to this group.
In addition, type 1 HBMIs include methods
for direct stimulation of the brain to alleviate
pain, to control motor disorders such as
Parkinson’s disease5, and to reduce epileptic
activity by stimulation of cranial nerves6.
These last three applications rely on the
observation that direct microstimulation of
brain tissue can disrupt pathological patterns
of brain activity that underlie some 
neurological disorders. Type 2 HBMIs rely on
the real-time sampling and processing of
large-scale brain activity to control artificial
devices. An example of this application
would be the use of neural signals derived
from the motor cortex to control the 

Real-time direct interfaces between the brain and electronic and mechanical
devices could one day be used to restore sensory and motor functions lost
through injury or disease. Hybrid brain–machine interfaces also have the
potential to enhance our perceptual, motor and cognitive capabilities by
revolutionizing the way we use computers and interact with remote
environments.

After a clever throw in by Tostão, a simple flick of Rivelino’s magic left foot was enough to send
the ball soaring into the thin air of the Azteca stadium in Mexico City. As the immaculate white
object flew towards the middle of the penalty box on that hot afternoon, the colourful crowd that
packed the stands slowly rose in anticipation. They roared, already celebrating, because they
had seen that scene a thousand times before: the same graceful black man, dressed in blue shorts
and a yellow jersey with the green 10 sewn in the back, defying logic, making fun of physics. The
early celebration was warranted. As expected, Pelé floated above all Italian defenders to
encounter the ball in mid air, and, with a gentle kiss of a forehead, changed its trajectory towards
the net. Brazil had scored the first of its four goals in the final game of the 1970 World Cup and a
whole country was about to start dancing in the streets.

Auditory prostheses work by converting features of
acoustic signals, such as speech, into patterns of
electrical stimuli that are then delivered through
an array of chronically implanted electrodes to
auditory nerve fibres lying on the basilar
membrane of the cochlea. As the basilar
membrane contains a representation of sound
frequencies, known as a tonotopic map, auditory
prostheses deliver high-frequency information to
the basal region of the cochlea, and low-frequency
signals to the apical region, to mimic normal
auditory processing. More than 30,000 deaf
patients, ranging in age from 12 months to 80
years, have had such devices successfully
implanted2. Although results vary from case to
case, even slight improvements in auditory
performance have helped people to communicate
better and to become more aware of their
surrounding environment.

Box 1Cochlear implants:
the first HBMI
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movements of a prosthetic robotic arm in real
time. Obviously, clinical applications that
require reciprocal interaction between the
brain and artificial devices will combine both
type 1 and 2 HBMIs.

The design and implementation of
HBMIs will involve the combined efforts of
many areas of research, such as neuroscience,
computer science, biomedical engineering,
very large scale integration (VLSI) design
and robotics. I have selected a few current
developments in these fields to illustrate
below some of the conceptual advances and
technologies that will be required to design
and implement useful HBMIs. I will then
describe two potential clinical applications
of such technology that should emerge in the
near future: a system to monitor and treat
epileptic seizures and a device to control a
robotic prosthetic arm.

Building a HBMI
The first of the many challenges associated
with the development of any HBMI is the need
to understand better the principles by which
neural ensembles encode sensory, motor and
cognitive information. This is rapidly 
becoming one of the main goals of modern
neuroscience, but our present knowledge is
elementary at best. In the case of motor con-
trol, for instance, the areas of the primate brain
involved are well known, and considerable
information is available on the physiological
properties of individual neurons located in
each of them. But we know little about how the
brain makes use of information from these
neurons to generate movements. To design a
type 2 HBMI that uses brain-derived signals to
control a prosthetic robotic arm, we will need
to learn how to sample and decode the motor
signals generated by neurons and how to feed
them into an artificial device to mimic the
intended movement.

Recording brain activity
It is clear that neurobiological principles will
be central in devising a strategy to overcome
these hurdles. For example, classic experi-
ments in primates have demonstrated that
fundamental parameters of motor control
emerge by the collective activation of large
distributed populations of neurons in the pri-
mary motor cortex (M1). Single M1 
neurons are broadly tuned to the direction of
force required to generate a reaching arm
movement7. In other words, even though
these neurons fire maximally before the 
execution of a movement in one direction,
they also fire significantly before the onset of
arm movements in a broad range of other
directions. Therefore, to compute a precise
direction of arm movement, the brain may
have to perform the equivalent of a neuronal
‘vote’ or, in mathematical terms, a vector sum-
mation of the activity of these broadly tuned
neurons7. This implies that to obtain the
motor signals required to control an artificial
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device we will need to sample the activity of
many neurons simultaneously and design
algorithms capable of extracting motor 
control signals from these ensembles. 
Moreover, it will be crucial to investigate how
these neural ensembles interact under more
complex and ‘real-world’ experimental con-
ditions8 to generate different motor behav-
iours. These data will be vital to answering
basic questions in regard to the development
of type 2 HBMIs. For example, what is the
minimum neuronal sample required to gen-
erate reliable brain-derived control signals?
Should these samples be obtained from one or
multiple brain areas? Does the same popula-
tion of neurons code for single or multiple
control parameters? Finally, how might 
neural encoding mechanisms change with
time, experience and learning?

Figure 1 illustrates the general organiza-
tion of a type 2 HBMI and depicts some of
the technological challenges involved in
designing such devices. The first design step
involves the selection of a technique (Fig. 1a)
that yields reliable, stable and long-term
recordings of brain activity that can be used
as control signals to drive an artificial device.
From recent studies in animals9,10, clinical
applications of HBMIs will probably require
sampling of large numbers of neurons (in the
order of hundreds or thousands) with a 
temporal resolution of 10–100 ms, depend-
ing on the application. 

Although neuroscientists have long rec-
ognized the need to investigate the properties
of large neural ensembles11, it is very difficult
to obtain reliable, long-term measurements
of neural ensemble activity with high spatial
and temporal resolution. Starting in the

1940s and 50s with multichannel recordings
of scalp electroencephalographic (EEG)
activity and of the general electrical activity
evoked by movement or sensory stimulation,
a variety of metabolic, optical and electro-
physiological methods have been introduced
for monitoring large-scale brain activity.
Modern multichannel electrophysiological
recordings are made from arrays of micro-
electrodes surgically implanted in the brain.
They currently allow neurophysiologists to
record simultaneously, with a resolution of
milliseconds, the extracellular activity of up
to 100 individual neurons, distributed across
multiple brain structures, in animals carry-
ing out some task or other12.  Although future
improvements might allow long-term and
non-invasive sampling of human neural
activity with the same temporal resolution as
intracranial recordings, the first generation
of HBMIs will probably rely on improved
versions of electrophysiological methods,
such as multichannel EEG or multielectrode
intracranial recordings. Indeed, preliminary
studies in paralysed patients have shown that
EEG signals can be used to trigger the move-
ment of computer cursors13 or offer a way for
patients to communicate14.

Unfortunately, less invasive electrophysi-
ological methods, such as scalp EEG record-
ings that reflect the common electrical 
activity of millions of neurons in widespread
areas of the cortex, lack the resolution to 
provide the kind of time-varying motor 
signals needed to control a robotic arm in
real time4. Multichannel intracranial record-
ings of brain activity, obtained by surgical
implantation of arrays of microwires within
one or more cortical motor areas, will 

Figure 1 Schematic description of the general organization of a type 2 HBMI.
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therefore be required, with mathematical
analysis of the extracellular activity of small-
er populations (100–1,000) of neurons pro-
viding the raw brain signals for use in most
HBMIs10. Despite some degree of recording
degradation over time, present technology
allows simultaneous sampling of 50–100
neurons, distributed across multiple cortical
areas of small primates, to remain viable for
several years10,12. Technological advances in
multielectrode array design and neural 
signal instrumentation in the next decade
alone are expected to increase the number of
neurons that can be recorded simultaneous-
ly by at least one order of magnitude.

The precise placement of the electrode
arrays for intracranial recording may not be
as critical to the ability to control an artificial
device as was first conjectured. As motor
control signals emerge from the distributed
activation of large populations of neurons,
and as cortical and subcortical neurons are
capable of considerable plastic reorganiza-
tion during adulthood15, electrode arrays
targeted to brain areas of interest may suffice
in most cases. As subjects learn to interact
with artificial devices through HBMIs, it is
likely that sampled neurons that were not
originally involved in the type of motor 
control to be mimicked may be recruited
into generating the signals required to 
control artificial devices.

Generating the output
After selecting a method for acquiring the
necessary brain signals, the next challenge is
to design the instrumentation (Fig. 1b–d)
required for recording and processing these
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signals in real time. Currently, this requires
specialized, sizeable and expensive electron-
ic equipment, which can amplify and filter
the original signal as well as perform analog-
to-digital conversion to facilitate further
processing and storage of data. To make
HBMIs viable, new technologies for
portable, wireless-based, multichannel
neural signal instrumentation are needed. 

The central issue of signal conditioning
and instrumentation may be solved in the near
future by the application of mixed-signal VLSI
into the design of neurophysiological instru-
mentation chips. This technology allows 
analog and digital signals to coexist in the same
microchip, and has the potential to provide the
multichannel, programmable and low-noise
package required for conditioning brain-
derived signals for clinical implementation of
HBMIs. Moreover, the resulting microchip
would be small enough to be chronically
implanted in patients and could be powered by
replaceable batteries. Such microchips could
rely on wireless communication protocols
based on a radio frequency link to broadcast
neural signals to other components of the
HBMI (Fig. 1d–e).

Prototypes of dedicated ‘instrumenta-
tion neurochips’ (Fig. 2) are currently being
developed, although many complex issues
must be solved before they can become 
operational16. For instance, efficient solu-
tions will have to be found to provide enough
power for performing analog and digital
processing, while still ensuring that signals
can be transmitted by telemetry. Thus, 
battery technology, device packing and the
bandwidth of the neural signals, among

other factors, will certainly be important in
the design of HBMIs16. 

Having selected a method for sampling and
conditioning brain signals, the next step — and
one of the most difficult challenges — is to
define a strategy for extracting meaningful
control information from neural ensemble
activity in real time. Currently, neuroscientists
rely on a variety of linear and nonlinear 
multivariate algorithms, such as discriminant
analysis, multiple linear regression and artifi-
cial neural networks, to carry out real-time and
off-line analysis of neural ensemble data. 
Preliminary results from animal studies that
use these different methods are encouraging,
but considerably more experience is needed to
apply these techniques in clinical HBMIs. The
challenge is to produce algorithms that can
combine the activity of large numbers of 
neurons, which convey different amounts of
information, and extract stable control signals,
even when the firing patterns of these neurons
change significantly across different timescales.
Research on areas ranging from automatic
sorting algorithms for unsupervised isolation
of single neuron action potentials, to the design
of real-time pattern recognition algorithms
that can handle data from thousands of simul-
taneously recorded neurons will certainly be
required. In the same context, clinical applica-
tions of HBMIs will require considerable
computational resources.  

In the not too distant future, new develop-
ments in the design of brain-inspired VLSI17,
an exciting area of research aimed at modelling
neuronal systems in silicon18, may provide the
means for achieving the type of efficient real-
time neural signal analysis required for
HBMIs. This technology may allow pattern
recognition algorithms, such as artificial 
neural networks or realistic models of neural
circuits, to be implemented directly in silicon
circuits. Among many other technical hurdles,
significant work will be required to make these
silicon circuits adaptive, perhaps by incorpo-
rating learning rules derived from the study of
biological neural circuits. This will allow
‘training’ of algorithms as well as ensuring the
robustness of the control system. From an
implementation point of view, ‘analytical 
neurochips’ are ideal as they could be inter-
faced with the instrumentation neurochip and
be chronically implanted in the subject. 

The final component of the idealized
HBMI (Fig. 1e–f) is a real-time control inter-
face which uses processed brain signals to
control an artificial device. The types of
devices used are likely to vary considerably in
each application, ranging from elaborate
electrical pattern generators to control mus-
cles, to complex robotic and computational
devices designed to augment motor skills19. 

HBMIs for epilepsy control
Estimates indicate that about 0.5–2.0% of the
population has epilepsy20. About 10–50% of
these patients do not respond well to current

102amplifiers

Bandpass
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Differential
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Figure 2 A prototype of an instrumentation neurochip for processing brain-derived signals. This
chip, containing a portion of the analog signal processing for 16 neural channels, was designed by
I. Obeid, H. Aurora, J. Morizio and P. Wolf in the Departments of Biomedical and Electrical &
Computer Engineering at the Pratt School of Engineering, Duke University. The mixed-signal
CMOS (complementary metal-oxide semiconductor) process used in the design supports digital
signal processing modules which will be included in future generations of this device. 

© 2001 Macmillan Magazines Ltd



insight feature

antiepileptic medications and may not be
candidates for surgery. Throughout this 
century, neuroscientists have used multi-
channel recording from scalp, brain surface
and even chronically implanted intracranial
electrodes to investigate the electrophysio-
logical activity that characterizes different
types of seizure in humans. By doing so, 
scientists have not only identified different
types of epilepsy, but they have also learned
that there are distinct patterns of neurophysi-
ological activity associated with the initiation
and establishment of a seizure attack. 

Several exciting new developments in
epilepsy research indicate that the develop-
ment of an unsupervised HBMI for monitor-
ing, detecting and treating seizure activity
may be possible in the next decade (Fig. 3a).
First, for certain types of seizure, there seems
to be a particular spatiotemporal pattern of
cortical activity that appears seconds or even
minutes before the full epileptic attack
starts21. Recently, a few laboratories have
introduced automatic seizure-prediction
algorithms that can be applied to intracranial
and scalp recordings to forecast the occur-
rence of a seizure21,22. These and future
seizure-prediction algorithms might provide
sufficient time (2–5 minutes) to warn the
patient of an imminent attack, and to trigger
automatic therapeutic intervention before
convulsion or loss of consciousness. 

But what kind of therapy could be 
triggered that would work in patients who are
refractory to epilepsy medication? The
answer may lie in another recent develop-
ment in epilepsy research. Studies in both
animals23 and human subjects6 have revealed
that electrical stimulation of peripheral 
cranial nerves, such as the vagus23 and
trigeminal24 nerves, can substantially reduce
cortical epileptic activity. Moreover, if this
peripheral nerve stimulation is applied
before the initiation of seizure or during its
initial stages, significantly higher reduction
of seizure activity can be achieved. 

From this I believe that a device containing a
combination of both type 1 and 2 HBMIs could
be designed to function somewhat like a 
modern heart pacemaker (Fig. 3a). This ‘brain
pacemaker’ would rely on arrays of chronically
implanted electrodes to search continuously
for spatiotemporal patterns of cortical 
activity indicating an imminent epileptic
attack. Instrumentation neurochips would be 
responsible for all the basic signal-processing
operations. They would also provide signals to
one or more seizure-prediction algorithms,
implemented into analytical neurochips,
which would carry out real-time analysis of
cortical activity. Once pre-seizure activity pat-
terns were detected, the analytical neurochip
could trigger electrical stimulation of one or
multiple cranial nerves. In patients who
respond to pharmacological therapy, the same
stimulator could be used to activate a mini-
pump to deliver one or more anti-epileptic

restoring different aspects of motor function
in patients with severe body paralysis, caused
primarily by strokes, spinal cord lesions or
peripheral degenerative disorders (Fig. 3b).
Advances in this rapidly growing field of
research indicate that neural signals from
healthy regions of the brain could be used to
control the movements of artificial prosthet-
ic devices, such as a robotic arm. Preliminary
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drugs directly into the blood stream. Recently, a
simplified implementation of this concept has
been used successfully in rats24, giving hope
that a brain pacemaker for seizure monitoring
and control in humans may not be far ahead.

HBMIs to restore motor function
Another clinical application of HBMIs that
could emerge in the near future aims at

Figure 3 Schematic description of two potential applications of type 2 HBMIs. a, Design of a ‘brain
pacemaker’ that monitors neural activity using a VLSI chip designed to detect seizure activity.
When seizure activity is detected, the VLSI chip sends a signal to an implanted stimulus generator
that drives either a nerve cuff electrode or a mini-pump for drug delivery, either of which can stop
the seizure activity. b, HBMI for controlling a robotic prosthetic arm using brain-derived signals.
Multiple, chronically implanted, intracranial microelectrode arrays would be used to sample the
activity of large populations of single cortical neurons simultaneously. The combined activity of
these neural ensembles would then be transformed by a mathematical algorithm into continuous
three-dimensional arm-trajectory signals that would be used to control the movements of a
robotic prosthetic arm. A closed control loop would be established by providing the subject with
both visual and tactile feedback signals generated by movement of the robotic arm.

a

b 

Transmission of
neural activity
via telemetry

Real-time interface to control 
a robotic prosthetic arm

Y

Visual and
tactile feedback

Implanted
microelectrode
arrays

Multichannel neural 
signal processing:  
Instrumentation and
analysis neurochip

Computation of
3D movement
trajectory

3D arm trajectory

Z

X

Neural
signal 
from 
brain

Seizure activity without intervention:

Implanted VLSI device for
monitoring neural activity
and detecting seizure activity

Implanted stimulus 
generator

Implanted mini-pump 
for seizure-triggered 
systemic drug delivery

Seizure activity terminated by automatic seizure detector:

Nerve cuff electrode 
for seizure-triggered
cranial nerve 
stimulation 

Impulse 
from nerve

© 2001 Macmillan Magazines Ltd



findings also demonstrate that paralysed
patients can learn to use brain signals
obtained from their motor cortex to interact
with computers25.

Extensive electrophysiological work in
primates and imaging studies in humans have
shown that multiple interconnected cortical
areas in the frontal and parietal lobes are
involved in the selection of motor commands
that control the production of voluntary arm
movements26. Although each of these areas
has different degrees of functional specializa-
tion, in theory, each of them could be selected
as the source of brain signals for controlling
the movements of an artificial device. Within
each of these cortical areas, different motor
parameters, such a force and direction of
movement, are coded by the distributed 
activity of populations of neurons, each of
which is typically broadly tuned to one (or
more) of these parameters. This indicates that
implementations of HBMIs for robotic arm
control need to rely on intracranial recordings
from large populations of single neurons to
derive motor control signals.

At a first glance, a random sample of
100–1,000 cortical motor neurons, which
represents a reasonable expectation for the
yield of multielectrode intracranial record-
ings in the near future, may look too small to
unveil any useful information. But recent
neurophysiological experiments dispute this
view. For instance, currently one can obtain
precise off-line reconstructions of complex
three-dimensional arm trajectories by using
simple multiple regression techniques to
transform the activity of 300-400 serially
recorded cortical motor neurons into a 
neural population vector27. Moreover, exper-
iments in rats9 and primates10 have shown
that simple, real-time algorithms, applied to
samples of 50–100 simultaneously recorded
cortical neurons, can be used to control
robotic devices in real time and mimic the
type of three-dimensional arm reaching
movements produced by primates.

Another important issue is that, to achieve
seamless interactions with prosthetic devices,
patients will have to receive sensory feedback
information (for example visual or tactile 
signals) from the prosthetic limbs. These
feedback signals will establish a closed control
loop between the brain and artificial devices
and will probably help patients learn how to
operate HBMIs. Studies in rats have revealed
that, if subjects receive visual feedback infor-
mation as they learn to use brain activity to
interact with a robotic arm, and are rewarded
for the successful completion of these move-
ments, they progressively cease to produce
overt limb movements9. In other words, even
though the rats continued to exhibit the 
patterns of cortical activity required to control
the movements of the robotic arm, this motor
activity did not result in any significant limb
movement. This indicates that motor control
signals can be generated by cortical neurons

without any muscle activity, and hence that
paralysed patients might be capable of learn-
ing to operate a robotic arm even though they
cannot move their own limbs.

These observations also raise the intrigu-
ing hypothesis that, by establishing a closed
control loop with an artificial device (Fig. 3b),
the brain could incorporate electronic,
mechanical or even virtual objects into its
somatic and motor representations, and 
operate upon them as if they were simple
extensions of our own bodies. The fact that the
adult cortex is capable of significant functional
reorganization (or plasticity) after peripheral
and central injuries15, changes in sensory 
experience28 and learning of new motor skills29

supports this possibility. Indeed, the notion
that adult plasticity can dynamically alter the
perception of the limits of our own body is cor-
roborated by studies on patients who have
undergone limb amputations. Immediately
after the amputation, most of these patients
experience the sensation that their amputated
limb is still present and moving. These 
‘phantom limb’ sensations are paralleled by a
significant plasticity of body maps in the
somatosensory cortex30, the part of the brain
that receives and interprets sensory signals
from areas such as the skin surface. Instead of
remaining silent, the areas in these brain maps
that used to represent the amputated limb 
progressively start to respond to stimulation of
neighbouring body regions spared by the
amputation. Thus, it is conceivable that tactile
feedback signals, generated by the movements
of a brain-controlled robotic arm and 
delivered to the patient’s skin, could be used to
incorporate the representation of such an 
artificial device into cortical and subcortical
somatotopic maps. 

Undoubtedly, years of research will be
required and many fundamental technologi-
cal breakthroughs needed before this comes
close to reality. Nevertheless, it seems 
reasonable to predict that a definitive
demonstration of such a phenomenon could
trigger a revolution in the way future genera-
tions interact with computers, virtual
objects and remote environments, by allow-
ing never-before-experienced augmentation
of perceptual, motor and cognitive capabili-
ties. Such applications, however, will require
the introduction of new, non-invasive 
methods for sampling brain activity.

A final thought
Although developing expectations of a distant
future is a risky business and may raise unjusti-
fied hope that solutions are just around the
corner, I cannot avoid ending this brief
overview on an optimistic tone. Despite many
significant conceptual and technological
obstacles, the possibility of developing clinical
applications of HBMIs is real and worth 
pursuing, especially given the potential bene-
fits that they may bring to people afflicted by
neurological disorders. At the very least,

research on HBMIs will yield powerful new
tools to investigate hypotheses of how large
populations of neurons process information
and adapt according to changes in experience.
Some may argue that one could achieve this
goal just by building theoretical models and
running computational simulations. Perhaps
that is true. But as my good friend Idan Segev, a
leading computational neuroscientist, always
tells me, there is a subtle but fundamental 
difference between simulating reality and
building it. Those of us who saw Pelé scoring
that magic goal on that hot Mexican afternoon
in 1970 and dreamed about doing the same
thing would certainly agree.
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