## Food for thought



#### Magistretti et al., Science, 1999

## Hemodynamic response

Blood flow

#### Neuroelectrical activity



#### Hemoglobin Oxygen



#### Blood flow



#### Deoxyhemoglobin

## Questions about the integration of EEG/MEG with the fMRI

- What are the techniques to usefully relate EEG/MEG and fMRI?
- What is the evidence for true synergy?
- What behavioral and analysis methods are successful?
- What do we expect in the near future?

#### Human brain produces measurable signals on the scalp

- Hans Berger in 1929 produced the first report on the measurement of electrical activity in man over the scalp surface
- He hoped that EEG could represent a sort of "window on the mind"





#### Berger's equipment

### High Resolution Electroencephalography (HREEG)

- Brain activity elicited a time varying potential distribution over the cortical surface
- Such potential distribution are still measurable at the scalp level
- Due to low scalp conductivity the EEG Signal to noise ratio is very low
- HREEG => Sampling the potential distribution with an high number of electrodes, MRI images for realistic head modeling and spatial deblurring algorithms



#### Steps to improve the spatial details of recorded EEG Data



Insert the geometry of skull and dura mater in inverse calculation

## The neuroimaging puzzle

Different neuroimaging techniques, same experimental paradigm
 (unilateral right middle finger movement)







## The linear inverse problem

$$\xi = \underset{x}{\operatorname{argmin}} (\|Ax - b\|_{M}^{2} + \lambda^{2} \|x\|_{N}^{2})$$

The difference between modeled and measured potentials/fields is minimized, together with the energy of the sources

1 2 3 4 5 6 7 8 9 10 11 12

A is the lead field matrix
x is a vector in the source space
b is the measured data vector
A is a regularization parameter
M is the metric for the data space
N is the metric for the source
space
ξ is the solution vector

Solutions  $\xi$  are obtained by using  $\mathbf{x} = \mathbf{G} \mathbf{b}$  where  $G = N^{-1} A' \left(AN^{-1} A' + \lambda M^{-1}\right)^{-1}$ 

## **Dipolar Localization Error (DLE)**



 $x_{Est} = Gb = GAx_{True}$ 

 $x_{Est} = R x_{True}$ 

 $\boldsymbol{x}_{Est} = \boldsymbol{R}\boldsymbol{\delta}_{i} = \boldsymbol{R}_{i}$ i-th column of the resolution matrix R  $\hat{i} = \arg \max_{k} |\mathbf{R}_{ki}|$  $DLE_i = |\vec{r}_i - \vec{r}_i|$ 

index of the maximum of the

i-th column of the resolution matrix R

distance between the two sources

#### **Resolution Kernels**



The R<sub>ik</sub>s define how the different sources other than the i-th contributed to the estimation to the i-th itself

The R<sub>ik</sub>s belongs to the i-th row of the resolution matrix and are called Resolution Kernels

### **The Resolution Kernel**

#### Bad Resolution Kernel

Iarge peak around the maximum

 one or more peaks located far from the source position





## Good Resolution Kernel narrow peak around the maximum one peak located at the source position





#### From current strength to probability maps

- How obtain a measure of the uncertainty of current estimations due to the EEG/MEG noise (n) ?
- Under the null hypothesis of no activation the Z is distributed as a Gaussian distribution
- In the case of three component for each dipole the q as a sum of squares is distributed as a Fisher distribution (F<sub>3,n</sub>)

$$\sigma^{2}_{Noise} = Gnn'G' = GCG'$$

$$Z_{i}(t) = \frac{G \cdot b(t)}{\sqrt{GCG'}}$$

$$q_{i}(t) = \frac{\left[\sum_{k=1}^{3} G_{k} \cdot b(t)\right]^{2}}{\sum_{k=1}^{3} G_{k} \cdot C \cdot G_{k}'}$$

# From current strengths to probability maps



**Point spread functions (DLE)** 

#### **Distribution of the PSF (DLE)**

Dale et al., 2000

## From current strengths to probability maps



Actual dipole position

Weighted minimum norm Resolution kernel

Noise normalized Resolution kernel

### From scalp to cortical EEG in Rols



## Integration of EEG and MEG data







## Integration of EEG and MEG data

#### Why:

Different sensitivities to the neural sources Increased amount of information

**Question:**How we can fuse femtoTesla and microVolt?

**Answer:** normalizing the measures with noise standard deviation

#### How:

Mahalanobis metric for data space Column normalization for the source space

$$\xi = \underset{x}{\operatorname{argmin}} (\|Ax - b\|_{M}^{2} + \lambda^{2} \|x\|_{N}^{2})$$





#### Integration of EEG and MEG data

20 ms 23 ms 18..24 ms

EEG

MEG

EEG + MEG



#### **SEPs**

**SEFs** 

Fuchs et al., EEG J., 1998

#### The EEG and MEG movement-related recordings



## EEG, MEG and EEG/MEG indexes





Liu et al., 2000

#### Babiloni et al., 2000

### **EEG/MEG** integration



MEG

EEG





**EEG/MEG** 

## Integration of EEG or MEG data with fMRI













#### fMRI

### **Combining EEG and/or MEG with fMRI**

#### Why: Different spatial resolution Different time resolution



#### How:

- Mahalanobis metric for the data space (M)
- Metric on the source space (N) that takes into account:
  - visibility from the sensors (column normalization); (|| A<sub>.i</sub>||<sup>2</sup>)
  - source activity as expressed by fMRI signal  $\alpha$ ; g( $\alpha$ )

## Integration of MEG and fMRI





#### **fMRI-constrained MEG solutions**



Dale et al., Neuron, Vol. 26, 55–67, April, 2000,

Combining EEG or MEG with fMRI Solutions  $\xi$  are obtained by using x = G b where  $G = N^{-1}A' \left(AN^{-1}A' + \lambda M^{-1}\right)^{-1}$ 

Proposed metric for integration of EEG, MEG and fMRI data

$$N_{ii} = \frac{\|A_{.i}\|_{2}^{2}}{1 + K\alpha} = \frac{\|A_{.i}\|_{2}^{2}}{g(\alpha)}$$

Solution of the electromagnetic inverse problem with fMRI constraints when  $K\alpha >> 1$ 

Solution of electromagnetic inverse problem without fMRI constraints when  $K\alpha \ll 1$ 

## **Block-design fMRI signals**





Information on hemodynamic behaviour of cortical sources are provided on a temporal scale of minutes Diagonal metric N

Percent changes  $(\alpha)$ 

0%

4%

 $N_{ii}^{-1} = A.$  $\| g^{-2} g(\alpha_i)^2$ 

## **Event-related fMRI signals**



 Hemodynamical behavior estimated by the correlation between the eventrelated fMRI signals from the cortical areas i and j on a seconds scale
 Full source metric N

$$N_{ij}^{-1} = \|A_{i}\|_{2}^{-1} \cdot \|A_{j}\|_{2}^{-1} \cdot g(\alpha_{i}) \cdot g(\alpha_{j}) \cdot Corr(i, j)$$

## Temporal domain: movement onset (0 msec)



## Temporal domain: reafference peak (+110 msec)



#### **Movement-related cortical dynamics**



#### From current strength to probability maps

- How obtain a measure of the uncertainty of current estimations due to the EEG/MEG noise (n) ?
- Under the null hypothesis of no activation the Z is distributed as a Gaussian distribution
- In the case of three component for each dipole the q as a sum of squares is distributed as a Fisher distribution (F<sub>3,n</sub>)

$$\sigma^{2}_{Noise} = Gnn'G' = GCG'$$

$$Z_{i}(t) = \frac{G \cdot b(t)}{\sqrt{GCG'}}$$

$$q_{i}(t) = \frac{\left[\sum_{k=1}^{3} G_{k} \cdot b(t)\right]^{2}}{\sum_{k=1}^{3} G_{k} \cdot C \cdot G_{k}'}$$

## **Temporal domain: from current strength** to probabilistic map $b_i(t)$ $n_i(t$ G $\sigma^2_{Noise_i} = [Gnn'G']_i = [GCG']_i$ $Z_{i}(t) = \frac{\begin{bmatrix} G \cdot b(t) \end{bmatrix}_{i}}{\begin{bmatrix} \sqrt{GCG'} \end{bmatrix}_{i}}$ i-th dipole Dale et al, Neuron, 2000

Liu, 2000, PhD thesis

# From current strengths to probability maps



**Point spread functions (DLE)** 

#### **Distribution of the PSF (DLE)**

Dale et al., 2000

## From current strengths to probability maps



Actual dipole position

Weighted minimum norm Resolution kernel

Noise normalized Resolution kernel

#### **Movement-related cortical dynamics**













## Frequency domain: from current strength to probabilistic map

C

i-th dipole

 $\sigma^{2}_{Noisei} = Var(bCSD_{ii}(T, f))$  $Z_{i}(\Delta t, f) = \frac{\left[G \cdot bCSD_{ii}(\Delta t, f)G'\right]_{i}}{\sigma_{Noisei}}$ 

 $bCSD_{ii}(\Delta t)$ 



## Conclusions



- High resolution EEG improved spatial details of the raw EEG potential distributions with respect to the standard EEG techniques
- Multimodal integration of high resolution EEG data with those provided by MEG and fMRI techniques is possible in the framework of linear inverse problem
- Information about sources correlation estimated from event-related fMRI can be inserted in the solution of the linear inverse problem by using a full source metric N

#### Filippo Carducci

#### **Claudio Babiloni**

#### Fabio Babiloni

#### Febo Cincotti