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Summary
Motor practice may lead to expansion of trained compared with mild or no changes in the MP-alone and

INB-alone conditions. In Experiment 2, this dramaticrepresentations in the motor cortex, but it is unknown
whether this practice-dependent plasticity can be increase in biceps representation induced by MP�INB

was replicated when subjects were pretreated withpurposefully enhanced or depressed. Evidence, mainly
based on animal experiments, indicates that the activity placebo, but this increase was prevented or even switched

to a decrease when subjects were pretreated withof GABA-related cortical inhibition is important in
controlling the extent to which plasticity may occur. We lorazepam. These findings indicate that a decrease in

GABA-related inhibition facilitates practice-dependenttested the role of GABA in modulating practice-dependent
plasticity in the human motor cortex. A decrease in plasticity in the human motor cortex, whereas an increase

depresses it. In Experiment 3, practice-dependentGABA-related cortical inhibition was achieved by
ischaemic nerve block (INB) in the hand by plasticity (assessed by TMS, as in the first two

experiments) was also tested at the behavioural level.deafferentation/deefferentation and an increase was
achieved by administration of the GABAA receptor agonist The dramatic increase in biceps MEP size induced by

MP�INB was paralleled by an increase in peaklorazepam. In Experiment 1, healthy subjects performed
motor practice (MP), consisting of repeated ballistic acceleration of the fastest elbow flexion movements.

Similarly, the lack of change in MEP size in the MP-contractions of the biceps muscle in the absence (MP
alone) or presence of INB (MP�INB). Changes in the alone condition was paralleled by a lack of change in

peak acceleration. We propose that changes in GABAbiceps motor cortex representation were assessed by
transcranial magnetic stimulation (TMS). MP�INB activity may be instrumented to modulate plasticity

purposefully; for instance, to enhance plastic change andresulted in a dramatic increase in the size of the motor
evoked potential (MEP) and in paired-pulse excitability recovery of function after a lesion in neurological patients.

Keywords: practice-dependent plasticity; GABA-related inhibition; modulation of plasticity; human motor cortex;
transcranial magnetic stimulation

Abbreviations: APB � abductor pollicis brevis muscle; ES � electrical stimulation; GABA-T � GABA transaminase;
INB � ischaemic nerve block; LTD � long-term depression; LTP � long-term potentiation; MEP � motor evoked potential;
MP � motor practice; MT � motor threshold; NMDA � N-methyl-D-aspartate; PAS � passive movement of the elbow;
PPE � paired-pulse excitability; STP � short-term potentiation; rTMS � repetitive TMS; TMS � transcranial magnetic
stimulation

Introduction
The last two decades have provided ample evidence that the 1983; Kaas, 1991) or in the process of learning (for reviews,

see Weinberger, 1995; Donoghue et al., 1996; Sanes andadult non-human and human primate sensorimotor cortex
maintains the capacity for plastic change following lesions Donoghue, 2000). Some forms of plasticity can occur rapidly,

within minutes to hours. In the somatosensory cortex,(for reviews, see Merzenich and Kaas, 1982; Kaas et al.,
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neurones deafferented by peripheral nerve lesion or receptor agonist lorazepam. Together, Experiments 1 and 2
were designed to assess the role of GABA-related corticalamputation rapidly become responsive to sensory input from

adjacent intact body sites (Merzenich et al., 1983; Kolarik inhibition in modifying practice-dependent plasticity.
In both experiments, practice-dependent changes in motoret al., 1994; Silva et al., 1996; Tinazzi et al., 1997; Borsook

et al., 1998). In the motor cortex, representations can cortical output to the practice muscle (the biceps brachii
muscle) were studied with TMS, which is an establishedreorganize rapidly in response to peripheral nerve lesion or

ischaemic nerve block (Sanes et al., 1988; Donoghue et al., means to assess motor cortical plasticity (Cohen et al.,
1998). Motor threshold (MT), motor evoked potential (MEP)1990; Brasil-Neto et al., 1992, 1993; Ridding and Rothwell,

1995; Ziemann et al., 1998c), or during motor practice amplitude and paired-pulse excitability (PPE) were used to
test the membrane-related excitability of corticocortical axons(Pascual-Leone et al., 1993, 1995b; Nudo et al., 1996a, b;

Classen et al., 1998; Bütefisch et al., 2000) and motor (Ziemann et al., 1996b), corticospinal excitability (Devanne
et al., 1997) and the synaptic efficacy of inhibitory andlearning (Pascual-Leone et al., 1994, 1995a). Two main

mechanisms have been proposed to account for this rapid excitatory circuitry at the level of the motor cortex (Kujirai
et al., 1993; Ziemann et al., 1996c), respectively.plasticity. One is the unmasking of latent horizontal

connections (for reviews, see Sanes and Donoghue, 1997, Finally, to link these TMS measures of cortical plasticity
with motor performance, we evaluated practice-dependent2000) and the other is modification of the strength of synaptic

contacts, such as by long-term potentiation (LTP) and long- changes in the kinematics of the fastest voluntary elbow
flexion movements in addition to the changes in TMS-evokedterm depression (LTD) (for review, see Hess and Donoghue,

1996b). To some extent, both concepts rely on the view that motor cortical output (Experiment 3). We hypothesized that
the kinematics of ballistic movement changes in parallel withthe motor cortex is a dynamic substrate that contains multiple,

overlapping motor representations (Donoghue et al., 1992; TMS-evoked motor output, because ballistic movements are
generated through activity in the motor cortex and the fastest-Wassermann et al., 1992; Schieber and Hibbard, 1993; Rao

et al., 1995; Sanes et al., 1995) and a network of extensive conducting corticospinal neurones (Fromm and Evarts, 1981).
Furthermore, ballistic activity is closely linked to TMShorizontal connections (Huntley and Jones, 1991). Several

experiments have provided direct evidence that in the motor measures of motor excitability (Mills and Kimiskidis, 1996).
cortex both unmasking (Huntley, 1997) and LTP/LTD (Hess
and Donoghue, 1994, 1996a) are mediated, and constrained,
by the pre-existing horizontal connectivity. Another important Methods
property of unmasking and LTP/LTD is that they require or Subjects
are significantly enhanced by a reduction in local inhibition

In each of the three experiments (see below), six different
(Jacobs and Donoghue, 1991; Hess and Donoghue, 1994;

healthy, right-handed subjects were investigated (mean age
Hess et al., 1996).

25.7 � 4.2, 35.7 � 8.7 and 33.5 � 9.4 years, respectively).
Magnetic resonance spectroscopy experiments in humans

All experiments were approved by the Institutional Review
have shown a rapid decrease in GABA in the sensorimotor

Board of the National Institute of Neurological Disorders
cortex contralateral to transient ischaemic deafferentation of

and Stroke and were conducted according to the Declaration
the hand (Levy et al., 1999) and in the visual cortex after

of Helsinki. All subjects gave their written informed consent.
light deprivation (Boroojerdi et al., 2000). Previously, we
have shown that during deafferentation-induced disinhibition
in the sensorimotor cortex the effects of repetitive TMS

Experiment 1(rTMS) are dramatically enhanced (Ziemann et al., 1998b).
In particular, slow-rate rTMS, which was ineffective in Interventions

Five interventions were tested in each subject in separateproducing changes in motor output when given alone (without
deafferentation), resulted in a dramatic and long-lasting sessions conducted at least 1 week apart: ischaemic nerve

block (INB) alone to induce motor cortex disinhibition (Levyincrease in motor output to the biceps muscle when given
during deafferentation of the hand. Here, we tested et al., 1999); motor practice alone (MP); motor practice

during INB (MP�INB); electrical stimulation (ES) of the(Experiment 1) whether the effects of motor practice are also
enhanced when motor practice is performed during motor biceps during INB (ES�INB); and rapid passive movements

(PAS) of the elbow during INB (PAS�INB). For INB, acortex disinhibition.
Studies of the rat neocortex have shown that LTP switches pneumatic tourniquet was placed distal to the left elbow and

inflated to 220–250 mmHg for an average duration of 45 min.to LTD as a function of decreasing postsynaptic excitability
(Artola et al., 1990; Bear and Kirkwood, 1996). Therefore, For MP, subjects performed repeated (rate 0.1 Hz), externally

paced (by an auditory ‘go’ signal) voluntary elbow flexionwe hypothesized that practice-dependent plasticity may be
depressed if motor practice is performed during increased movements by briefly contracting the left biceps in a twitch-

like fashion. ES (0.2 ms square-wave constant-current pulses,cortical inhibition. We tested this hypothesis (Experiment 2)
by having subjects perform the motor practice during hand cathode on motor point of left biceps, average muscle twitch

amplitude 0.57 � 0.22 mV) and rapid PAS of the left elbowdeafferentation after having been pretreated with the GABAA



Modulation of practice-dependent plasticity 1173

(accomplished by the experimenter) were applied at the rate (153.1 � 74.9 and 162.6 � 63.4%, respectively). Because the
statistical analysis (see below) did not show an effect ofof 0.1 Hz while the subject did not practice. MP, ES and

PAS started at the time of tourniquet inflation and were interstimulus interval, the three intervals were pooled to
one variable (PPE) and were not treated separately. Alldiscontinued on reaching complete motor nerve block, defined

as the time when motor responses in a hand muscle, the measurements were made with the biceps at rest, monitored
by continuous audiovisual feedback of the biceps EMG. Theabductor pollicis brevis (APB), were no longer elicited by

TMS (mean 31.1 min). measures were obtained before intervention (pre-
measurement), at the end of intervention, i.e. 5 min afterMP and MP�INB defined the major comparison for testing

the extent to which the effects of MP on motor cortex output completion of INB or motor practice, and 20, 40 and 60 min
later (post-measurements).was enhanced by INB-induced disinhibition. INB was an

important control experiment in order to quantify the changes In order to quantify the voluntary EMG activity of the
ballistic biceps contractions during MP and MP�INB, theinduced by ischaemic forearm deafferentation alone (Ziemann

et al., 1998b). Finally, ES�INB and PAS�INB mimicked EMG was recorded through the same surface electrodes as
those used for the MEP measurements. The EMG was single-afferent signals produced by MP (muscle twitch and elbow

joint movement, respectively). Therefore, comparison of trial-rectified, aligned to the onset of the EMG burst and
then averaged across all recorded trials (mean, 186 trials).these control experiments with MP�INB tested the relative

contributions of afferent input and voluntary motor cortex The average was smoothed with a gliding sledge that averaged
across 10 neighbouring data points (2 ms). From this rectifiedactivation to the changes in motor cortex output induced by

MP�INB. and smoothed signal of the voluntary biceps EMG burst, the
peak amplitude (in mV) and the 25–75% onset-to-peak rise
time (in milliseconds) were measured.

Measurements
TMS-evoked motor cortical output was measured by surface
electromyography (EMG) (bandpass 0.1–2.5 kHz) from the Experiment 2
left APB and the left biceps muscle, using Ag–AgCl cup Interventions
electrodes in a belly–tendon montage and a Counterpoint Subjects performed MP�INB (as in Experiment 1), once
Electromyograph (Dantec Electronics, Skovlunde, Denmark). after pretreatment with a single oral dose of 2 mg of the
The raw EMG was digitized at a rate of 5 kHz and stored GABAA receptor agonist lorazepam [7-chlor-5-(2-
on an IBM 486 AT-compatible laboratory computer for chlorphenyl)-3- hydroxy-1H-1,4-benzodiazepin-2(3H)-on], a
off-line analysis. A figure-of-eight-shaped stimulating coil short-acting benzodiazepine, and a second time (1 week later)
connected to a Bistim module (Magstim, Whitland, Dyfed, after pretreatment with placebo. The order of drugs was
UK) was positioned on the scalp over the right motor cortex balanced across subjects. The drugs were administered 2.5 h
at the optimal site for eliciting MEPs in the left biceps. MT before the start of the measurements. In all subjects,
was determined to the nearest 1% of the maximum stimulator lorazepam induced mild sedation, which did not interfere with
output and defined as the minimum stimulus intensity to the subjects’ ability to comply fully with the requirements of
evoke MEPs of �50 µV in at least five of 10 trials with the the practice task.
biceps at rest (Rossini et al., 1994). Peak-to-peak MEP
amplitude was measured at stimulus intensities of 20 and
30% of stimulator output above the biceps MT (five trials Measurements
each). PPE was tested in a conditioning–test stimulus

TMS-evoked motor cortical output was measured the same
paradigm (Kujirai et al., 1993; Ziemann et al., 1996c). The

way as in Experiment 1.
intensity of the test stimulus was adjusted to produce a
control MEP of 200–500 µV when given alone. The
conditioning stimulus was set to 80% of the MT in the

Experiment 3APB. Such low-intensity TMS does not produce significant
Interventionscorticospinal activation (Di Lazzaro et al., 1998). Therefore,
Subjects performed MP and MP�INB in two separateany effect of the conditioning stimulus on the control MEP
sessions, as described for Experiment 1.was attributable to intracortical mechanisms. PPE was tested

at interstimulus intervals of 4, 10 and 15 ms by presenting
eight trials for each of the three intervals and eight control
trials in pseudorandomized order. For each interval, the mean Measurements

TMS-evoked motor output was measured as MEP amplitudeconditioned MEP was expressed as a percentage of the
control mean. As can be seen from Fig. 1C, the conditioning– in the biceps muscle, as described above. In addition,

voluntary motor output was measured as the 10–90% risetest interval of 4 ms resulted in inhibition of the test MEP
(before intervention across all interventions, 66.9 � 24.2%) time and the peak of the acceleration signal produced

by maximum ballistic elbow flexion movements, using awhile the intervals of 10 and 15 ms resulted in facilitation
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Fig. 1 Changes in TMS-evoked motor cortical output to the biceps muscle as induced by different
interventions. (A) MEP amplitude at the end of intervention (circles) and 20 min (squares), 40 min
(triangles), and 60 min (diamonds) later are given as increments of the preintervention measurements
(mean � standard error). Filled symbols indicate significant differences from zero (P � 0.05).
*Different from all other interventions at this time point (P � 0.05). (B) EMG recordings (averages of
10 trials) of the biceps MEP of one subject before (thin lines) and at the end of intervention (thick
lines). Calibration bars, 15 ms (horizontal) and 0.25 mV (vertical). (C) Intervention-induced changes in
paired-pulse excitability (PPE) shown separately for the three interstimulus intervals of 4 ms (circles),
10 ms (squares) and 15 ms (triangles). The five data points for each interval and intervention refer to
the time points before intervention, late into intervention and 20, 40 and 60 min after the end of
intervention. (D) Intervention-induced changes in PPE. †Different from all interventions except INB
(P � 0.05). Other conventions as in panel A. INB � ischaemic nerve block at the forearm; MP �
motor practice; MP�INB, ES�INB and PAS�INB � motor practice, electrical stimulation of the
biceps muscle and passive elbow flexion movements, respectively, during INB.

piezoelectric accelerometer (Endevco, San Juan Capistrano, intervention were pseudorandomized and balanced across
subjects.Calif., USA) attached to the volar surface of the forearm.

The subject sat upright in a chair with the forearm supinated
and the elbow flexed at 90° and fixed to the armrest. The
ballistic movements were made in the vertical plane in Statistics

Each measure (M) was analysed separately. For each timeresponse to an auditory ‘go’ signal; there were 15 trials each
at 0.1 Hz before intervention (pre-measurement) and 10, 30 point, changes were expressed as (Mpost – Mpre)/Mpre. The

within-subject factors of intervention and time were evaluatedand 50 min after intervention (post-measurements). Subjects
were instructed to perform full-range elbow flexion with a repeated-measures analysis of variance. The levels

of M (two stimulus intensities for MEP amplitude, threemovements, i.e. from the starting position of 90° between
forearm and upper arm to maximal elbow flexion. Trials interstimulus intervals for PPE) were also tested but never

showed a significant effect. Therefore, the data reported herewere discarded from off-line analysis if the flexion movement
stopped short. To avoid possible carry-over effects between are the averages of MEP amplitude and PPE across levels.

Post hoc paired comparisons were performed with Fisher’sthe two experiments (MP versus MP�INB), we studied the
left arm of a given subject in one experiment and the protected least significant difference multiple t statistic. The

significance level was defined as P � 0.05.right arm in the other experiment. The orders of arm and
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Fig. 2 Changes in TMS-evoked motor cortical output to the biceps muscle as induced by motor practice during ischaemic hand
deafferentation. Subjects were pretreated either with 2 mg of the GABAA receptor agonist lorazepam or with placebo. Other conventions
as in Fig. 1.

in MEP amplitude occurred when subjects were pretreatedResults
with lorazepam (Fig. 2A and C). PPE increased late into INBExperiment 1
when subjects were pretreated with placebo, but decreased inMP�INB resulted in a significantly greater increase in MEP
subjects who had received lorazepam (Fig. 2B). MT wasamplitude of the biceps muscle than MP alone, INB alone
unaffected by intervention.(no practice) or proprioceptive feedback during deafferenta-

The EMG of the voluntary biceps burst did not show ation (no practice), mimicked by electrical stimulation of
significant difference during MP in the lorazepam versusthe biceps muscle (ES�INB) or passive elbow movements
placebo condition (mean peak amplitude 0.32 � 0.18 versus(PAS�INB) (P � 0.05; Fig. 1A and D). This enhancement
0.34 � 0.18 mV; mean 25–75% rise time 21.9 � 4.1 versuswas not explained simply by an additive effect because the
23.2 � 5.9 ms; P � 0.47 and 0.57, respectively).increase in MEP amplitude produced by MP�INB was

Furthermore, there were no differences between conditionssignificantly larger than the algebraic sum of the increases
in the measures of TMS-evoked motor output to the bicepsproduced by MP alone and INB alone (2.61 � 1.27 versus
before the start of interventions (premeasurements) or in the1.14 � 1.06, P � 0.034) (Fig. 1A, measurements made late
duration of intervention (P � 0.12–0.55).in the intervention period). Furthermore, MP�INB was the

only intervention to induce a significant increase in PPE
(P � 0.05) (Fig. 1C and D). This was due to both a slight
reduction in inhibition at the interstimulus interval of 4 ms Experiment 3

MP�INB resulted in an increase in the mean peak amplitudeand a clear increase in facilitation at the intervals of 10 and
15 ms (Fig. 1C). MT was unaffected by intervention. of the voluntary EMG burst (before intervention and 10, 30

and 50 min after intervention: 0.63 � 0.31, 0.74 � 0.36MP was performed the same way with and without INB.
This was inferred from the monitoring of the rectified and 0.65 � 0.28 and 0.77 � 0.36 mV, respectively; for normalized

data see Fig. 3B), whereas this increase was absent after MPsmoothed EMG of the voluntary biceps burst during MP,
which revealed no difference with and without INB (mean alone (mean amplitudes before and 10, 30 and 50 min

after intervention: 0.78 � 0.25, 0.79 � 0.24, 0.79 � 0.18 andpeak amplitude 0.24 � 0.15 versus 0.26 � 0.10 mV; mean
25–75% rise time 20.0 � 7.1 versus 24.7 � 5.9 ms; P � 0.80 � 0.13 mV, respectively; cf. Fig. 3A). This difference

was matched by a significantly stronger increase in peak0.68 and 0.18, respectively).
Furthermore, there were no differences between acceleration and a significantly stronger decrease in the 10–

90% rise time of the acceleration signal after MP�INB wheninterventions in the measures of TMS-evoked motor cortical
output to the biceps before the start of interventions compared with the non-significant changes produced by MP

alone (Fig. 3C and D). This practice-dependent improvement(premeasurements) or in the duration of intervention (P �
0.20–0.98). Therefore, these factors can be excluded as in movement kinematics during INB was accompanied by

an increase in MEP amplitude in the biceps muscle in eachexplanations of the INB-induced enhancement of practice-
dependent plasticity. subject (Fig. 3E and F).

During motor practice, monitoring of the EMG of the
voluntary biceps burst did not show a significant difference
between the MP alone and the MP�INB condition (meanExperiment 2

After pretreatment of the subjects with placebo, MP�INB peak amplitude 0.59 � 0.09 versus 0.37 � 0.16 mV; mean
25–75% rise time 18.0 � 2.9 versus 21.9 � 8.6 ms; P �resulted in a strong increase in biceps MEP amplitude,

replicating the findings of Experiment 1, whereas no increase 0.09 and 0.54, respectively), indicating that the motor practice
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Fig. 3 (A and B) Grand averages across all subjects (n � 6) of the individually normalized (EMG peak amplitude before intervention set
to 1.0) EMG burst of the biceps muscle during maximal ballistic elbow flexion movement (A, MP alone; B, MP�INB). The thick lines
show EMG data before intervention; the thin black thick and medium lines show data obtained 10, 30 and 50 min after the end of
intervention, respectively. (C and D) Changes in kinematics (peak acceleration, 10–90% rise time) of maximum ballistic elbow flexion
movements induced by motor practice without (MP) and with (MP�INB) ischaemic hand deafferentation. Post-measurements 10 min
(squares), 30 min (triangles) and 50 min (diamonds) after the end of intervention are shown as increments of the pre-measurement
(mean � standard error). Other conventions as in Fig. 1A and B. (E and F) Individual increments in peak acceleration and rise time
(10 min after intervention) are plotted against increments in biceps MEP amplitude (at the end of intervention). Each circle denotes one
subject (1–6) and the average (A, � standard error) measured in the MP (white circles) and MP�INB experiment (black circles).

was performed the same way across the two interventions. (Ziemann et al., 1996b). Accordingly, MT is significantly
There were also no differences in MEP amplitude and elevated by sodium- and calcium-channel-blocking drugs
movement kinematics before the start of intervention (pre- (Mavroudakis et al., 1994; Ziemann et al., 1996b; Chen
measurements) or in the duration of intervention (P � et al., 1997) but not by drugs interacting with the main
0.07–0.70). neurotransmitters in the neocortex, GABA and glutamate

INB alone was not tested in Experiment 3. Although the (Ziemann et al., 1996a, b, 1998a; Liepert et al., 1997).
possibility remains that INB alone may have led to changes Therefore, the lack of effect of motor practice on MT
in movement kinematics similar to those observed for indicates that the nature of practice-dependent plasticity
MP�INB, we felt that this was unlikely because INB cannot be explained by an increase (non-specific) in
alone did not result in significant changes in motor cortex membrane-related excitability of cortical neural elements, as
excitability in Experiment 1. has been reported in motor cortex neurones for some other

forms of motor learning (Woody et al., 1991).
The increase in MEP size induced by MP�INB does notDiscussion

provide definite evidence for the site and nature of practice-
The principal result of the present experiments is that

dependent plasticity because MEP size assesses the
ischaemic limb deafferentation/deefferentation enhanced

excitability of the corticospinal system as a whole, including
practice-dependent plasticity of the human motor cortex,

the corticomotor neurone and the spinal motor neuronewhereas pretreatment with the GABAA receptor agonist
(Devanne et al., 1997) and, therefore, cortical, subcorticallorazepam depressed it.
and spinal mechanisms may contribute to an increase in MEP
size. In contrast, PPE reflects the synaptic excitability of
inhibitory and excitatory neural circuits specifically at theSite and nature of practice-dependent plasticity
level of the motor cortex, and these circuits in turn controlMT was not changed by motor practice. MT reflects mainly

membrane-related excitability of corticocortical axons the excitability of the corticomotor neurones (Kujirai et al.,
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1993; Ziemann et al., 1996c). Accordingly, GABAA receptor muscle, practice-dependent plasticity in the form of a medial
movement of the TMS-mapped hand representation (Liepertagonists and N-methyl-D-aspartate (NMDA) receptor

antagonists result in an increase in paired-pulse inhibition et al., 1999) could be prevented if subjects were pretreated
with an NMDA receptor antagonist (Tegenthoff et al., 1999).and a decrease in paired-pulse facilitation (Ziemann et al.,

1996a, b, 1998a; Liepert et al., 1997; Schwenkreis et al., Finally, a practice-dependent shift in the direction of TMS-
evoked thumb movements (Classen et al., 1998) could also1999; Di Lazzaro et al., 2000). A significant increase in PPE

was induced by MP�INB only but not by any of the other be suppressed by pretreatment with an NMDA receptor
antagonist (Bütefisch et al., 2000).interventions. As discussed above, this points specifically to

a cortical site of this form of practice-dependent plasticity, In summary, it is most likely that the increase in motor
cortex excitability of the biceps representation induced bywhich may be interpreted best as a shift in the balance of

the synaptic efficacy of horizontal motor cortical circuits MP�INB in the present study, in particular the increase in
PPE, reflects STP-like synaptic plasticity. Other investigatorstowards less inhibition and more facilitation (Kujirai et al.,

1993; Ziemann et al., 1996c). have similarly proposed that synaptic cortical plasticity
underlies motor learning (Donoghue et al., 1996; AsanumaThe results of Experiment 1 show that voluntary activation

of the biceps muscle was necessary for practice-dependent and Pavlides, 1997; Rioult-Pedotti et al., 1998).
plasticity to occur because the proprioceptive feedback from
muscle contraction and elbow joint movement, when
mimicked by electrical stimulation of the biceps muscle

Mechanisms of the INB-induced enhancement(ES�INB) or passive elbow movements (PAS�INB) without
motor practice did not result in plastic changes (Fig. 1). This of practice-dependent plasticity

Multimetabolite magnetic resonance spectroscopy hasindicates that sensory feedback was not relevant for this
particular form of practice-dependent plasticity. The main provided evidence that limb deafferentation/deefferentation

leads to a rapid decrease in GABA content in the sensorimotorreason may be the nature of the practised ballistic elbow
flexion movements, which are largely centrally prepro- cortex contralateral to INB (Levy et al., 1999). The decrease

in GABA became significant 0–10 min before completegrammed movements (Hallett et al., 1975) that can be
performed normally even in patients with severe deafferenting ischaemic motor nerve block had been achieved, i.e. ~30 min

into the deafferentation procedure. This is matched by theneuropathy (Hallett et al., 1975; Rothwell et al., 1982).
Furthermore, motor cortex plasticity can occur during mental time course of changes in biceps MEP amplitudes, which

also start to increase at around the time of completion ofpractice in the absence of actual movement and apparent
sensory feedback (Pascual-Leone et al., 1995a). There is ischaemic motor nerve block (Ridding and Rothwell, 1997).

The possibility of very rapid deefferentation-induced changesnow substantial evidence that motor imagery activates the
primary motor cortex similarly to real motor performance in cortical inhibition is supported by experiments in rats,

which showed that transection of the facial nerve resulted,(Stephan et al., 1995; Porro et al., 1996; Abbruzzese et al.,
1999) while not affecting the excitability of spinal motor within 10 min, in disinhibition of the deefferented motor

cortex when the animals were tested with paired intracorticalneurones (Kasai et al., 1997; Hashimoto and Rothwell, 1999).
This corroborates further the key role of voluntary (mental microstimulation (Farkas et al., 2000).

The mechanism of the rapid decrease in GABA level isor actual) motor cortex activation in practice-dependent
plasticity. This view does not bear on the well-established unknown. GABA is produced in the nerve terminals of

GABAergic neurones from glutamate and glutamic acid byknowledge that other forms of motor cortex plasticity require
defined sensory input for their occurrence (Hamdy et al., glutamic acid decarboxylase and is catabolized by GABA

transaminase (GABA-T) (Tillakaratne et al., 1995). Magnetic1998; Ridding et al., 2000; Stefan et al., 2000).
The effects produced by MP�INB were relatively short- resonance spectroscopy data have shown that the level of

glutamate does not change significantly during ischaemiclived (~20 min) and may have arisen from short-term
potentiation (STP)-like mechanisms. Like LTP, STP reflects deafferentation (Levy et al., 1999). Therefore, downregulation

of glutamic acid decarboxylase is unlikely to account for theactivity-dependent synaptic strengthening, which depends on
the activation of NMDA receptors (Anwyl et al., 1989; decrease in GABA. Another magnetic resonance spectroscopy

study demonstrated that GABA increased in the human cortexCastro-Alamancos and Connors, 1996). Although the role of
NMDA receptor activation was not tested directly in the by �40% within 2 h of administration of a single oral dose

of vigabatrin (50 mg/kg), an irreversible inhibitor of GABA-present experiments, one previous study showed that a similar
enhancement of motor cortical output to the biceps muscle T (Petroff et al., 1996). This suggests that rapid modulation

of GABA-T activity provides a candidate mechanism toinduced by rTMS of the motor cortex during INB-induced
disinhibition depended on the activation of NMDA receptors explain the change in GABA concentration that occurs within

1 min. In our experiments, one would then propose abecause it could be blocked if the subjects were pretreated
with an NMDA receptor antagonist (Ziemann et al., 1998c). deafferentation-induced increase in GABA-T activity to

explain the rapid decrease in GABA level.Similarly, in a different experimental setting, which required
the simultaneous contraction of a hand and a proximal arm Synaptic plasticity in the motor cortex depends strongly
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on the activity of GABA-related inhibition. Experiments on dependent plasticity in the clinical situation is a crucial
question. We have recently conducted a set of experimentsslices of rat motor cortex showed that the successful induction

of LTP, in this case by repetitive electrical microstimulation, in chronic stroke patients in order to facilitate the
rehabilitation of hand function (W. Muellbacher, C. Richards,required a reduction in local cortical inhibition by

iontophoretic application of the GABAA receptor antagonist U. Ziemann, G. Wittenberg, D. Weltz, B. Boroojerdi,
L. G. Cohen and M. Hallett, unpublished). These patientsbicuculline (Hess and Donoghue, 1994; Hess et al., 1996).

As in the present experiments, the effects of rTMS on motor were asked to practise a pincer grip between the thumb and
index finger of the paretic hand. After an initial mildcortex excitability were also dramatically enhanced in the

presence of INB-induced cortical disinhibition (Ziemann improvement in maximum grip force and peak acceleration
between the two fingers, motor performance quickly reachedet al., 1998b).

Conversely, increasing the activity of GABA-related a plateau. The patients then underwent temporary anaesthetic
block of the upper brachial plexus on the paretic side,cortical inhibition by pretreatment with a GABAA receptor

agonist resulted in a significant reduction in practice- resulting in selective deafferentation/deefferentation of the
upper arm. This was done, as in the present experiments, independent plasticity in the thumb-movement paradigm

(Bütefisch et al., 2000). The present experiments extend this order to disinhibit the affected contralateral motor cortex;
however, in the present experiments disinhibition wasby demonstrating a switch from an increase to a decrease in

PPE as a consequence of pretreatment with the GABAA achieved by deafferentation/deefferentation of the hand.
During this intervention, the patients resumed practice of thereceptor agonist lorazepam (Fig. 2B). This suggests that,

beyond a mere suppression of STP-like plasticity, cortical pincer grip. This resulted in a dramatic further increase in
the MEP size of the thumb flexor muscle, maximum gripsynapses can be modified bidirectionally. A similar

phenomenon was observed in slices of rat neocortex, in force and peak acceleration above the previously reached
plateau level. In contrast, an increase in cortical inhibition iswhich LTP switched to LTD as a function of decreasing

postsynaptic excitability (Artola et al., 1990; Bear and probably detrimental for the recovery of function, as shown
in animal experiments (Hernandez and Schallert, 1988;Kirkwood, 1996). Furthermore, LTD was specifically induced

by afferent stimulation in the rat visual cortex if the GABAA Hernandez et al., 1989) and by anecdotal experience in stroke
patients (for review, see Goldstein, 1998).receptor agonist muscimol was added (Kato and Yoshimura,

1993). Finally, in some subjects practising simultaneous In conclusion, our findings suggest that GABA-related
cortical inhibition can be manipulated to modulate plasticitycontractions of a hand muscle and an upper arm muscle there

was a lateral shift of the TMS-mapped hand representation of the human cortex. This leads to the prediction that
practice-dependent cortical plasticity and associated changesafter pretreatment with lorazepam (Tegenthoff et al., 1999).

This is opposite to the medial shift observed under drug-free in behaviour, such as perceptual and motor learning and the
recovery of function after lesions, can be enhanced whenconditions (Liepert et al., 1999; Tegenthoff et al., 1999). The

present experiments supplement this finding of opposite concomitant measures are taken to reduce GABA-related
inhibitory mechanisms in the cortex.effects of motor practice as a function of the amount of

GABA-related inhibition by suggesting a switch between
LTP- (or STP-) and LTD-like synaptic plasticity as the
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